Open Access
Issue |
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 5 | |
Section | Emerging Technologies and Applied Science | |
DOI | https://doi.org/10.1051/matecconf/201821501002 | |
Published online | 16 October 2018 |
- Yuhendra, Joshapat T.S., Assessment of multi temporal image fusion for remote sensing application, International Journal on advance science engineering information technology, 7(3), 778–784, 2017 [CrossRef] [Google Scholar]
- Zeng, Y., Zhang, J., Van Genderen,J.L., Zhang, Y., Image fusion for land cover change detection, Int. J. Image and Data Fusion, 1(2), 193–215. 2010 [CrossRef] [Google Scholar]
- Chibani, Y., 2007, Integration of panchromatic and SAR features into multispectral SPOT images using the ‘a trous’ wavelet decomposition. Int. J. of Remote Sensing, 28, 2295–2307. [CrossRef] [Google Scholar]
- Zhu, L., Tateishi, R., 2006. Fusion of multi-sensor multi temporal satellite data for land cover mapping, Int. J. Remote Sensing, 27(5), 903–918. [CrossRef] [Google Scholar]
- Cao, G., Hou, P., Ya-Qiu, J., Xianqiang, M., 2009. Fusion of features in multi-temporal SAR imagery to detect changes I urban areas, Int. J. Remote Sensing, 30(20), 5989–6001 [CrossRef] [Google Scholar]
- Ehler M, Klonus S, Astrand P.J, Rosso P. Multi-sensor for pansharpening in remote sensing, International Journal Image and Data Fusion.2010;1,1, 25–45 [CrossRef] [Google Scholar]
- Molch, K., 2010. Multi-sensor and multi-temporal fusion of VHR satellite imagery based on KIM, IEEE Geoscience and Remote Sensing Letter, 7(1). [Google Scholar]
- Kandrika, S., Ravinsankar, T., 2011. Multi-temporal satellite imagery and data fusion for improved land cover information ectraction, Int. J. Image and Data Fusion, 2, 1, 61–73. [CrossRef] [Google Scholar]
- Wurm, M., Taubenbock, H., Schardt, M., 2011. Object-based image information fusion using multi sensor earth observation data over urban areas, Int. J. Image and Data Fusion, 2, 2, 121–147. [CrossRef] [Google Scholar]
- Yuhendra, Alimuddin, I., Josaphat Tetuko, S.S., Kuze, H., 2012. Assessment of pan-sharpening methods applied to image fusion of remotely sensed multi-band data, Int. J. of Applied Earth Observation & Geoinformation, 18,165–175. [CrossRef] [Google Scholar]
- Otazu X, González M, Fors O, Núñez J. Introduction of Sensor Spectral Response Into Image Fusion Methods. Application to Wavelet-Based Methods, IEEE Transactions on Geoscience &Remote Sensing.2005;43(10), 2376–2385. [NASA ADS] [CrossRef] [Google Scholar]
- Chen, L., Lee, L., 1992. Progressive generation of control framework for image registration, Photogrammetric Engineering & Remote Sensing, 58(9):1321–1328. [Google Scholar]
- Lee C, Bethel J, 2001. Georegistration of Airborne Hyperspectral Image Data. IEEE Trans. on Geoscience and Remote Sensing. 39(7): 1347–1351. [CrossRef] [Google Scholar]
- Choi M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter, IEEE Trans. Geosciences Remote Sensing.2006;2 44, 1672–1682. [CrossRef] [Google Scholar]
- Karathanassi V, Kolokousi P, Ionnidou S. A comparison study on fusion methods using evaluation indicators, Int. J. Remote Sensing.2007; 28(10), 2309–2341. [CrossRef] [Google Scholar]
- Ling Y, Ehler M, Usery E.L, Madden M. FFT-enhanced IHS transform method for fusing high-resolution satellite images, ISPRS Journal of Photogrammetry & Remote Sensing. 2007; 61, 381– 392 [CrossRef] [Google Scholar]
- Kumar U, Mukhopadhyay C, Ramachandra T.V. Pixel based fusion using IKONOS imagery, Int. J. Recent Trend in Engineering. 2009; 1(1),173–175. [Google Scholar]
- Bovolo F, Bruzzone L, Capobianco L, Garzelli A, Marchesi S. Analysis of effect of pan-sharpening in change detection, IEEE Geoscine. Remote Sensing Letter. 2010; 7(1) [Google Scholar]
- Shah V. P, Younan N. H, and King R. L. An efficient pansharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosciences Remote Sensing.2008; 4. [Google Scholar]
- Kumar U, Mukhopadhyay C, Ramachandra T.V. Pixel based fusion using IKONOS imagery, International Journal Recent Trend in Engineering.2009;1(1),173–175. [Google Scholar]
- Wang L, Cao X, Chen J. ISVR: an improve synthetic variable ratio method for image fusion, Geocarto International.2008; 23(2), 155–165. [CrossRef] [Google Scholar]
- Rahman M.M, Sri Sumantyo J.T, Sadek M.F. Microwave and optical image fusion for surface and sub-surface feature mapping in Eastern Sahara, International Journal Remote Sensing. 2010; 31(20), 5465–5480. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.