Open Access
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
Article Number 01001
Number of page(s) 7
Section Emerging Technologies and Applied Science
Published online 16 October 2018
  1. S. A. Huettel, A. W. Song, G. McCarthy, Functional magnetic resonance imaging, Sinauer Associates, Sunderland, (2004) [Google Scholar]
  2. E. AmaroJr., G.J. Barker, study design in fMRI: basic principles. brain and cognition, 60 (3), 220–232, (2006) [CrossRef] [Google Scholar]
  3. H. Matsukura, T. Nihei, H. Ishida, multi-sensorial field display: Presenting spatial distribution of air-flow and odor, In Virtual Reality Conference (VR), IEEE: 119–122, (2011) [Google Scholar]
  4. M. Tada, T. Kanade, an mr-compatible optical force sensor for human function modeling. In Medical Image Computing and Computer-Assisted Intervention– MICCAI. Springer: 129–136, (2004) [Google Scholar]
  5. J. Meinhardt, J. Muller, motor response detection using fiber optics during functional magnetic resonance imaging.’ Behavior Research Methods, Instruments, & Computers, 33 (4), 556–558, (2001) [CrossRef] [Google Scholar]
  6. A. Hollinger, Design of fmri-compatible electronic musical interfaces. Master’s thesis, McGill University, Motreal, Canada, (2008) [Google Scholar]
  7. G. S. Fischer, I. Iordachita, C. Csoma, J. Tokuda, S.P. DiMaio, C.M. Tempany, N. Hata, G. Fichtinger, Mricompatible pneumatic robot for transperineal prostate needle placement IEEE/ASME Trans. On Mechatronics, 13 (3), 295–305. (2008) [CrossRef] [Google Scholar]
  8. R. Gassert, R. Moser, E. Burdet, H. Bleuler, Mri/fmri-compatible robotic system with force feedback for interaction with human motion. IEEE ASME Trans. on Mechatronics, 11 (2), 216. (2006) [CrossRef] [Google Scholar]
  9. N. Yu, C. Hollnagel, A. Blickenstorfer, S. Kollias, R. Riener, fmri-compatible robotic interfaces with fluidic actuation. Robotics: Science and Systems, 25–28. (2008) [Google Scholar]
  10. S.M. Golaszewski, F. Zschiegner, C.M. Siedentopf, J. Unterrainer, R.A. Sweeney, W. Eisner, S. Lechner-Steinleitner, F.M. Mottaghy, S. Felber, A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neuroscience letters, 324 (2), 125–128. (2002) [CrossRef] [Google Scholar]
  11. C. Wienbruch, V. Candia, J. Svensson, R. Kleiser, S.S. Kollias, A portable and low-cost fmri compatible pneumatic system for the investigation of the somatosensensory system in clinical and research environments. Neuroscience letters, 398 (3), 183–188. (2006) [CrossRef] [Google Scholar]
  12. N. Yu, W. Murr, A. Blickenstorfer, S. Kollias, R. Riener, An fmri compatible haptic interface with pneumatic actuation. In IEEE ICORR. IEEE: 714–720. (2007) [Google Scholar]
  13. T.O. Woods, Standards for medical devices in mri: Present and future. Journal of Magnetic Resonance Imaging, 26 (5), 1186–1189. (2007) [CrossRef] [Google Scholar]
  14. S. Follmer, D. Leithinger, A. Olwal, N. Cheng, H. Ishii, Jamming user interfaces: Programmable particle stiffness and sensing for malleable and shape-changing devices. In Proc. of UIST 2012, ACM: 519–528. (2012) [Google Scholar]
  15. C. Harrison, S.E. Hudson, Providing dynamically changeable physical buttons on a visual display. In Proc. CHI 2009, ACM: 299–308. (2009) [Google Scholar]
  16. S. Kim, H. Kim, B. Lee, T.J. Nam, W. Lee, Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In Proc. of CHI, ACM: 211–224. (2008) [Google Scholar]
  17. L. Yao, R. Niiyama, J. Ou, S. Follmer, C. Della Silva, H. Ishii, Pneui: Pneumatically actuated soft composite materials for shape changing interfaces. In Proc. UIST, ACM: 13–22. (2013) [Google Scholar]
  18. R. Slyper, J. Hodgins, Prototyping robot appearance, movement, and interactions using flexible 3d printing and air pressure sensors. In RO-MAN, IEEE: 6–11. (2012) [Google Scholar]
  19. H.A. Putra, X. Ren, Developing fMRI-Compatible Interaction System through Air-Pressure. In Proc. Adj. UIST, ACM. (2016) [Google Scholar]
  20. V. Savage, R. Schmidt, T. Grossman, G. Fitzmaurice, B. Hartmann, A series of tubes: Adding interactivity to 3d prints using internal pipes. In Proc. UIST, ACM: 3–12. (2014) [Google Scholar]
  21. M. Vazquez, E. Brockmeyer, R. Desai, C. Harrison, S.E. Hudson, 3d printing pneumatic device controls with variable activation force capabilities. In Proc. CHI, ACM: 1295–1304. (2015) [Google Scholar]
  22. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides, Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 24 (15), 2163–2170. (2014) [CrossRef] [Google Scholar]
  23. V. Renvall, Functional magnetic resonance imaging reference phantom. Magnetic Resonance Imaging, 27 (5), 701 – 708. (2009) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.