Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 04027
Number of page(s) 5
Section Computers
Published online 05 October 2018
  1. A. Aota, V.I. Shvets, A.M. Yurkevich, O.V. Mosin, and D.A Skladnev. Preparation of deuterated inosine suitable for biomedical application. Journal of Medical Sciences. 8 (4): 231-232, (1995). [Google Scholar]
  2. J.M.D. Coey, S. Cass. Magnetic water treatment. Journal of Magnetism and Magnetic Materials, 209: 71-74, (2000). [CrossRef] [Google Scholar]
  3. A. Szkatula, M. Balanda, M. Kopec. Magnetic treatment of industrial water. Silica activation. The European Physical: Journal Applied Physics. 18: 41-49, (2002). [CrossRef] [EDP Sciences] [Google Scholar]
  4. F. Alimi, M. Tlili, M. Ben Amor, G. Maurin, C. Gabrielli. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material. Chemical Engineering and Processing: Process Intensification. 48 (8): 1327-1332 (2009). [CrossRef] [Google Scholar]
  5. Zhigang Jia et al.. Preparation and Application of Novel Magnetically Separable γ-Fe2O3/Activated Carbon Sphere Adsorbent. Material Science and Engineering. 176, pp. 861-865, (2011). [CrossRef] [Google Scholar]
  6. S. Chaturvedi, P.N. Dave. Removal of iron for safe drinking water. Desalination. 303: 1-11 (2012). [CrossRef] [Google Scholar]
  7. V. F. Ochkov and J.Chudova. Magnetic treatment of water: backgraund and current state. Proceedings of 16th International Conference on the Properties of Water and Steam, United Kingdom, 1-5 September (2013). [Google Scholar]
  8. Mang Lu et al.. Surface modification of porous suspended ceramsite used for water treatment by activated carbon/Fe3O4 magnetic composites. Environmental Technology. 34: 2301-2307 (2013). [CrossRef] [Google Scholar]
  9. S.V. Polyakov, Yu.N. Karamzin, T.A. Kudryashova, N.I. Tarasov. Mathematical modelling of water treatment processes. Mathematica Montisnigri. XL: 110-126 (2017). [Google Scholar]
  10. L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Pergamon Press, London (1960). [Google Scholar]
  11. R. Eymard, T.R. Gallouet, R. Herbin, The finite volume method. Handbook of Numerical Analysis, Amsterdam, North Holland, 7: 713-1020 (2000). [Google Scholar]
  12. S.V. Polyakov. Exponential Difference Schemes with Double Integral Transformation for Solving Convection-Diffusion Equations. Mathematical Models and Computer Simulations. 5 (4): 338-340 (2013). [CrossRef] [Google Scholar]
  13. S.V. Polyakov, Yu.N. Karamzin, T.A. Kudryashova, I.V. Tsybulin. Exponential Difference Schemes for Solving Boundary-Value Problems for Diffusion-Convection-type Equations. Mathematical Models and Computer Simulations. 9 (1): 71-82 (2017). [CrossRef] [Google Scholar]
  14. A.A. Samarskii and E.S. Nikolaev. Numerical Methods for Grid Equations. I: Direct Methods. II: Iterative Methods, Basel-Boston-Berlin, Birkhäuser Verlag, pp. 1-502 (1989). [Google Scholar]
  15. Henk A. van der Vorst. Iterative Krylov Methods for Large Linear System. Cambridge University Press, pp. 1-221 (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.