Issue |
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
|
|
---|---|---|
Article Number | 04027 | |
Number of page(s) | 5 | |
Section | Computers | |
DOI | https://doi.org/10.1051/matecconf/201821004027 | |
Published online | 05 October 2018 |
A novel parallel algorithm for 3D modelling electromagnetic purification of water
Keldysh Institute of Applied Mathematics RAS, Miusskaya sq. 4, Moscow 125047, Russia
* Corresponding author: kudryashova@imamod.ru
The computational fluid dynamic research in this work has focused on the problem of full-scale three-dimensional modelling water purification processes by the electromagnetic method. Presently, this method of purification was used in the final stage of processing for the production of ultrapure water. In spite of many field experiments, detailed data on such processes can be obtained only by the mathematical modelling. This way allows us to take into account many aspects, for example: real three-dimensional geometry, physical structure of the purification system, heterogeneous composition of the impurities, etc. And also, the mathematical modelling helps to optimize many parameters in order to improve a design of the purification system. Within the framework of the modelling problem, one of the important aspects is the correct description of the three-dimensional flow inside a specific purification system. For this purpose, various mathematical models and numerical approaches are implemented. In this paper, the flow calculation was realized on basis of the Navier-Stokes equations.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.