Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 04001
Number of page(s) 6
Section Computers
Published online 05 October 2018
  1. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, (2016) [Google Scholar]
  2. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, IJCV, (2015) [Google Scholar]
  3. L. June-Goo, J. Sanghoon, C. Young-Won, L. Hyunna, K. Guk Bae, S. Joon Beom and K. Namkug, Deep Learning in Medical Imaging: General Overview, Korean Journal of Radiology, (2017) [Google Scholar]
  4. L. Geert, K. Thijs, B. Babak Ehteshami, A. S. Arnaud Arindra, F. Ciompi, M. Ghafoorian, J. van der Laak, B. Van Ginneken and C. Sanchez, A Survey on Deep Learning in Medical Image Analysis, Nijmegen: Diagnostic Image Analysis Group, (2017) [Google Scholar]
  5. H. Marcovitch, Ed., “Stenosis,” in Black's Medical Dictionary: 41st Edition, Londow, A & C Black Publishers Limited, (2005) [Google Scholar]
  6. V. Gorenoi, M. P. Schönermark and A. Hagen, “CT coronary angiography vs. invasive coronary angiography in CHD,” GMS health technology assessment, no. 8, (2012) [Google Scholar]
  7. D. S. Baim, “Coronary angiography,” in Grossman's Cardiac Catheterization, Angiography, and Intervention, 7th edn, D. S. Baim, Ed., Philadelphia, Lippincott Williams & Wilkins, (2005) [Google Scholar]
  8. E. Arnoldi, M. Gebregziabher, U. J. Schoepf, R. Goldenberg, L. Ramos-Duran, P. L. Zwerner, K. Nikolaou, M. F. Reiser, P. Costello and C. Thilo, “Automated computer-aided stenosis detection,” European radiology, no. 20.5, (2010) [Google Scholar]
  9. D. Ciregan, U. Meier and J. Schmidhuber, “Multi-column deep neural networks for image classification,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, Providence, (2012) [Google Scholar]
  10. S. Lawrence, C. L. Giles, A. C. Tsoi and A. D. Back, “Face Recognition: A Convolutional Neural Network Approach,” Neural Networks, IEEE Transactions on, 8, 1 (1997) [CrossRef] [Google Scholar]
  11. J. Wang and L. Pere, “The effectiveness of data augmentation in image classification using deep learning,” arXiv, (2017) [Google Scholar]
  12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. W.-F. D. Xu, S. Ozair and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, (2014) [Google Scholar]
  13. P. Y. Simard, D. Steinkraus and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” ICDAR, 3 (2003) [Google Scholar]
  14. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv, 1409, 1556 (2014) [Google Scholar]
  15. A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, (2012) [Google Scholar]
  16. D. Erhan, Y. Bengio, A. Courville and P. Vincent, “Visualizing Higher-Layer Features of a Deep Network,” Dept. IRO, Université de Montréal, Montreal, (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.