Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 03016
Number of page(s) 8
Section Communications
DOI https://doi.org/10.1051/matecconf/201821003016
Published online 05 October 2018
  1. J. Christensen, M. Vestergaard, M. G. Pedersen, C. B. Pedersen, J. Olsen, P. Sidenius, Incidence and prevalence of epilepsy in Denmark, Epilepsy Research, 76:60-65 (2007) [CrossRef] [Google Scholar]
  2. W. A. Hauser, J. F. Annegers, L. T. Kurland Incidence of epilepsy and unprovoked seizures in Epilepsia Rochester, Minnesota: 1935-1984, 34:453-458 (1993) [Google Scholar]
  3. M.-P. Hosseini, M.-R. Nazem-Zadeh, D. Pompili, K. Jafari-Khouzani, K. Elisevich, H. Soltanian-Zadeh, Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients, Medical Physics, 43(1): 538-553, 2016. [CrossRef] [Google Scholar]
  4. World Health Organization, Epilepsy. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs999/en/ [Google Scholar]
  5. A. Schulze-Bonhage et al. Patients’ views on EEG-based seizure prediction devices, Epilepsia 51 (2010): 21. [Google Scholar]
  6. A. Shoeb et al. Vagus nerve stimulation triggered by machine learning Based seizure, in Epilepsy: 385-395, CRC Press (2011) [CrossRef] [Google Scholar]
  7. B. Schelter et al. Seizure prediction: the impact of long prediction horizons, Epilepsy Research 73(2): 213-217 (2007). [CrossRef] [Google Scholar]
  8. B. Schelter et al., Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction, Chaos: An Interdisciplinary Journal of Nonlinear Science 16, 013108:1-10 (2006). [CrossRef] [Google Scholar]
  9. M. Le Van Quyen et al., Anticipation of epileptic seizures from standard EEG recordings, The Lancet 357.9251:183-188 (2001). [CrossRef] [Google Scholar]
  10. C. Cortes, V. Vladimir, Support-vector networks, Machine Learning 20(3):273-297 (1995). [Google Scholar]
  11. C. A. Teixeira et al., EPILAB: A software package for studies on the prediction of epileptic seizures, Journal of Neuroscience Methods 200(2):257-271 (2011) [CrossRef] [Google Scholar]
  12. S. Minaee, W. Yao, Fingerprint recognition using translation invariant scattering network, Proc. IEEE Signal Processing Medicine and Biology Symposium (SPMB) (2015) [Google Scholar]
  13. S. Lawrence et al., Face recognition: A convolutional neural-network approach, IEEE Transactions on Neural Networks 8(1) 98-113 (1997) [Google Scholar]
  14. M. Parashar, S. Hariri, Autonomic computing: an overview, in J.-P. Banatre et al. (Eds.): UPP 2004, LNCS 3566:247-259 (2005). [Google Scholar]
  15. R. Sterritt, Automatic computing, Innovations in Systems and Software Engineering, 1:79-88 (2005) DOI: 10.1007/s11334-005-0001-5. [CrossRef] [Google Scholar]
  16. M. Simsek, A. Aijaz, M. Dohler, J. Sachs, G. Fettweis, 5G-Enabled tactile internet, IEEE Journal on Selected Areas in Communications, 34(3):460-473 (March 2016) [CrossRef] [Google Scholar]
  17. M. Patel et al., Mobile-edge computing, Eur. Telecommun. Standards Inst., Sophia Antipolis, France, White Paper (2014). [Google Scholar]
  18. M.-P. Hosseini, T. X. Tran, D. Pompili, K. Elisevich, H. Soltanian-Zadeh, Deep learning with edge computing for localization of epileptogenicity using multimodal RS-fMRI and EEG big data, Proc. IEEE International Conference on Autonomic Computing, 83-92 (2017) [Google Scholar]
  19. K. Schindler et al., Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG, Brain 130(1):65-77 (2006) [CrossRef] [Google Scholar]
  20. T. J. Archdeacon, Correlation and Regression Analysis: A Historian’s Guide. Univ. of Wisconsin Press (1994) [Google Scholar]
  21. P. Bashivan et al., Learning representations from EEG with deep recurrent-convolutional neural networks, arXiv preprint arXiv: (2015). [Google Scholar]
  22. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014) [Google Scholar]
  23. A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems (2012) [Google Scholar]
  24. Chang, Y.-W., et al. Training and testing low-degree polynomial data mappings via linear SVM, Journal of Machine Learning Research, 11:1471-1490 (April 2010) [Google Scholar]
  25. I. Obeid, J. Picone, The Temple University Hospital EEG data corpus, Frontiers in Neuroscience, 10(196):1-5 (2016) [CrossRef] [Google Scholar]
  26. M. Stead et al., Microseizures and the spatiotemporal scales of human partial epilepsy, Brain, 133(9): 2789-2797 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.