Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02055
Number of page(s) 5
Section Systems
DOI https://doi.org/10.1051/matecconf/201821002055
Published online 05 October 2018
  1. BLAHA, M., SOBARŇA, M. Principles of the Army of the Czech Republic Reconnaissance and Fire Units Combat using. In The 15th International Conference “The Knowledge-Based Organization”. Sibiu (Romania): Nicolae Balcescu Land Forces Academy, 2009, pp. 17-25. [Google Scholar]
  2. BLAHA, M., BRABCOVÁ, K. Decision-Making by Effective C2I system. In The 7th International Conference on Information Warfare and Security. Seattle (USA): Academic Publishing Limited, 2012, pp. 44-51. ISBN 978-1-908272-29-4. [Google Scholar]
  3. Joint Forces Command, Training. Shooting Rules and ground artillery fire control (gun, platoon, battery compartment). Pub-74-14-1. Prague: 2007. 256 p. [Google Scholar]
  4. BLAHA, M., SOBARŇA, M. Some develop aspects of perspective Fire Support Control System in Czech Army conditions. In The 6th WSEAS International Conference on Dynamical Systems and Control. Sousse (Tunisia): University of Sfax, 2010, pp. 179-183. [Google Scholar]
  5. AD-6.1 Doctrine of Communication and Information systems. Praha: MO CR, 2003. [Google Scholar]
  6. AAP-6 NATO Glossary of Terms and Definitions (english and french). 2009. [Google Scholar]
  7. BLAHA, M., BRABCOVÁ, K. Communication environment in the perspective Automated Artillery Fire Support Control System. In The 10th WSEAS International Conference on APPLIED INFORMATICS AND COMMUNICATIONS (AIC ’10). Taipei, 2010. pp. 236-240. ISBN 978-960-474-216-5. [Google Scholar]
  8. BLAHA, Martin, POTUŽÁK, Ladislav. Decisions in the perspective Automated Artillery Fire Support. In: Recent Researches in Applied Informatics & Remote Sensing. Penang: Wseas Press, 2011, p. 87-91. ISBN 978-1-61804-039-8. [Google Scholar]
  9. NATO Standardization Agency. AArtyP-1 (A) -Artillery Procedures. Brussels, Belgium, 2004. 102 p. [Google Scholar]
  10. NATO Standardization Agency. AArtyP-5 (A) -NATO Indirect Fire Systems Tactical Doctrine. Brussels, Belgium, 2013. 121 p. [Google Scholar]
  11. DUBEC, Radek; HRŮZA, Petr. Military Concept of Modularity. Croatian Journal of Education, 2012, vol. 14, no. Spec.Ed. 1, p. 35-41. ISSN 1848-5189. [Google Scholar]
  12. MAJEK, V., SLOUF, V. Operations with fuzzy numbers in the task divided targets. In ICMT 2015 -International Conference on Military Technologies 2015, pp. 641-645. [Google Scholar]
  13. MAZAL, J., STODOLA, P., et al. Math modelling of the basic defensive activities. In: Proceedings of the International Conference on Applied Physics, Simulation and Computers (APSAC 2015) . Vienna, Austria: Institute for Natural Sciences and Engineering (INASE), 2015, p. 116-120. ISSN 1790-5109. ISBN 978-1-61804-286-6. [Google Scholar]
  14. ŠILINGER, K., BRABCOVÁ, K., POTUŽÁK, L. Assessment of Possibility to Conduct Fire for Effect without Adjust Fire according to Observational Distance of a Target in Artillery Automated Fire Control Systems. In: Recent Advances in Systems, Control and Informatics .Venice: EUROPMENT, 2013, p. 335-340. ISSN 1790-5117. ISBN 978-1-61804-206-4. [Google Scholar]
  15. BLAHA, M., ŠILINGER, K. Setting a Method of Determination of “Fire for Effect” Firing Data and Conversion of the METCM into the METEO-11. International Journal of Circuits, Systems and Signal Processing, 2015, no. 9, 2015, p. 306-3013. ISSN 1998-4464. [Google Scholar]
  16. BLAHA, Martin; ŠILINGER, Karel; POTUŽÁK, Ladislav; PŘIKRYL, Bohuslav. Perspective method for determination of fire for effect in tactical and technical control of artillery units. In: ICINCO 2016 Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics. Portugalsko: SCITEPRESS, 2016, p. 249-254. ISBN 978-989-758-198-4. [Google Scholar]
  17. BLAHA, Martin; ŠILINGER, Karel; POTUŽÁK, Ladislav. Data Binding Issue in Fire Control Application for Technical Control of Artillery Fire. In: The 21st World Multi-Conference on Systemics, Cybernetics and Informatics . Orlando, Florida:International Institute of Informatics and Systemics, 2017, p. 4-8. ISBN 9781941763582. [Google Scholar]
  18. ŠILINGER, Karel; BLAHA, Martin. Conversions of METB3 Meteorological Messages into the METEO11 Format. In: 2017 International Conference on Military Technologies (ICMT) . Brno:University of Defence, 2017, p. 278-284. ISBN 978-1-5386-1988-9. [Google Scholar]
  19. ŠILINGER, K., IVAN, J. and LADISLAV, P., 2017. Composition of the METEO11 meteorological message according to abstract of a measured meteorological data, ICMT 2017-6th International Conference on Military Technologies 2017, pp. 194-199. [Google Scholar]
  20. ŠILINGER, K., BLAHA, M. and PRIKRYL, B., 2017. Alternative compilation of the METEO11 meteorological message, WMSCI 2017-21st World Multi-Conference on Systemics, Cybernetics and Informatics, Proceedings 2017, pp. 80-85. [Google Scholar]
  21. STODOLA, Petr; MAZAL, Jan. Model of Optimal Cooperative Reconnaissance and its Solution using Metaheuristic Methods. Defence Science Journal, 2017, vol. 67, no. 5, p. 529-535. ISSN 0011-748X. [CrossRef] [Google Scholar]
  22. STODOLA, Petr. Improvement in the Model of Cooperative Aerial Reconnaissance Used in the Tactical Decision Support System. The Journal of Defense Modeling and Simulation, 2017, vol. 14, no. 4, p. 483-492. ISSN 1548-5129. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.