Open Access
Issue
MATEC Web Conf.
Volume 208, 2018
2018 3rd International Conference on Measurement Instrumentation and Electronics (ICMIE 2018)
Article Number 01004
Number of page(s) 5
Section Signal Analysis and Processing
DOI https://doi.org/10.1051/matecconf/201820801004
Published online 26 September 2018
  1. Dudgeon D E. Fundamentals of digital array processing[J]. Proceedings of the IEEE,1977,65(6):898–904. [CrossRef] [Google Scholar]
  2. Zhang Xiaofei. Theory and application of array signalprocessing[M]. Beijing:National Defence Industry Press,2010. [Google Scholar]
  3. Luo Zheng, Zhang Min, Li Pengfei. The new algorithm of two-dimensional DOA based on auto-correlation matrix with high power[J]. Journal of aviation 2012, 33(4):696–704. [Google Scholar]
  4. Pal P, Vaidyanathan P P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising[J]. Signal Processing Letters, IEEE, 2014, 21(6): 737–741. [CrossRef] [Google Scholar]
  5. Cands E J, Plan Y. Matrix Completion WithNoise[J]. Proceedings of the IEEE, 2009. [Google Scholar]
  6. Cands EJ, Eldar YC, Strohmer T, Voroninski V. Phase retrieval via matrix completion. SIAM J Imaging Sci 2011;6(1):199–225. [CrossRef] [Google Scholar]
  7. Cands EJ, Emmanuel S, Recht B. Exact matrix completion via convex optimization. Commun ACM 2012;55(6):1119. [Google Scholar]
  8. Chen C, He B, Yuan X. Matrix completion via an alternating direction method.IMA J Numer Anal 2012;32(1):22745. [Google Scholar]
  9. Toh Kim-Chuan, Yun Sangwoon. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pacific J Optim 2010;6(3):61540. [Google Scholar]
  10. Donoho DL. Compressed sensing. IEEE Trans Inform Theory 2006;52(4):1289–306. [CrossRef] [MathSciNet] [Google Scholar]
  11. Duarte MF, Baraniuk RG. Spectral compressive sensing. Appl Comput Harmon Anal 2013;35(1):11129. [CrossRef] [Google Scholar]
  12. Yuan X, Yang J. Sparse and low-rank matrix decomposition via alternating direction methods[J]. preprint, 2009, 12. [Google Scholar]
  13. Recht B, Xu W, Hassibi B. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization.Eprint Arxiv 2008;16(5):306570. [Google Scholar]
  14. Li B, Petropulu A. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2015:2444–2448. [Google Scholar]
  15. Zhang N, Xie C L, Tang J, et al. Three-dimensional extensions of matrix completion based MIMO radar[C]//Iet International Radar Conference. 2015:4–4. [Google Scholar]
  16. Wanghan L V, Wang H, Liu F, et al. Wideband DOA Estimation Based on Co-Prime Arrays with Sub-Nyquist Sampling[J]. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2016, E99.A(9):1717–1720. [Google Scholar]
  17. Chen Chuan, Guo Yong, Jia Yong. A DOA estimation method based on dual frequency coprime array[J]. Computer Application Research, 2017, 34 (05):1459–1462. [Google Scholar]
  18. Wu Chenxi, Zhang Min, Wang Ke. A underdetermined DOA estimation method of coprime array based on matrix completion[J]. Engineering Science and Technology, 2017, 49 (05): 156–163. [Google Scholar]
  19. Hu Y, Zhang D, Ye J, et al. Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 2013;35(9):211730. [Google Scholar]
  20. Recht B. A simpler approach to matrix completion. J Mach Learn Res 2011;12(4):3413–30. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.