Open Access
MATEC Web Conf.
Volume 207, 2018
International Conference on Metal Material Processes and Manufacturing (ICMMPM 2018)
Article Number 01001
Number of page(s) 7
Section Civil Engineering
Published online 18 September 2018
  1. S. T. Bhat, C. W. Lovell, Use of Coal Combustion Residues and Foundry Sands in Flowable Fill. Pub FHWA/IN/JHRP-96/02: J. H. R. P. (1996). [CrossRef] [Google Scholar]
  2. ACI-229R. Controlled-Low Strength Materials, Farm. Hills. (MI) (2005). [Google Scholar]
  3. K. Komlos, S. Popovics, T. Nürnbergerova, B. Babal, and J. S. Popovics, Ultrasonic Pulse Velocity Test Of Concrete Properties As Specified In Various Standards. Cem. Concr. Compos. 18 (1996). [Google Scholar]
  4. F. Khademi, S. M. Jamal, Predicting the 28 Days Compressive Strength of Concrete using Artificial Neural Network. i-Manager’s J. Civ.Eng. 6 (2), (2016). [Google Scholar]
  5. M. Nikoo, P. Zarfam, M. Nikoo, Determining Displacement in Concrete Reinforcement Building with using Evolutionary Artificial Neural Networks. World Appl. Sci. J. 16(12) (2012). [Google Scholar]
  6. J. H. Bungey, J. H. Millard, and M. G. Grantham. Testing of Concrete in Structures. NY: Taylor and Francis, (2006). [Google Scholar]
  7. Info: [Google Scholar]
  8. Info: [Google Scholar]
  9. L. Y. Yu, and S. Yong. The Relationship Between The Compressive Strength of Concrete Slabs and Rebound Hammer Number of Research. Taiwan NKUAST. 37(2) (2008). [Google Scholar]
  10. Info: [Google Scholar]
  11. Vapnik, V.N. The Nature of Statistical Learning Theory, Springer Science & Business Media, (2013). [Google Scholar]
  12. Noble, W. S. In B. Schoelkopf, K. Tsuda, & J.-P. Vert (Eds.), Kernel methods in computational biology (pp. 71–92). Cambridge, MA. (2004). [Google Scholar]
  13. S. X. Wei, ANFIS Applied to Concrete Compression Strength Prediction Mode, NKUAST., Master’s thesis, Kaohsiung, (2012). [Google Scholar]
  14. G. Ye, P. Lura, K. Van Breugel, A. Fraaij, Study on the Development of the Microstructure in Cement-Based Materials by Means of Numerical Simulation and Ultrasonic Pulse Velocity Measurement, Concr. Compos. 26(5) (2014). [Google Scholar]
  15. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. NTU: Taiwan, (2003). [Google Scholar]
  16. O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learn. 46 (2002). [Google Scholar]
  17. Abubakar S. Magaji, Audu Isah, Victor Onomza Waziri, K.R. Adeboye, A conceptual Nigeria stock exchange prediction: implementation using support vector machines-SMO model, W. Com. Sci. Inf. Tech. J. (WCSIT) 3 (4) (2013). [Google Scholar]
  18. S. Lukaszyk, A New Concept Of Probability Metric And Its Applications In Approximation Of Scattered Data Sets, Com. Mech. 33 (2004). [Google Scholar]
  19. J.-S. Chou, D.-K. Bui, Modeling heating and cooling loads by artificial intelligence for energy-efficient building design, Energy and Buildings 82 (2014). [Google Scholar]
  20. Suykens, J.A.K.; Van Gestel, T.; De Moor, B.; Vandewalle, J.Basic Methods of Least Squares Support Vector Machines. In Least Squares Support Vector Machines. W. Sci. Pub. (2002). [Google Scholar]
  21. Kruif, B. J., de Vries, T. J. A. Pruning Error Minimization In Least Squares Support Vector Machines. IEEE Trans on Neural N. 14 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.