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Abstract. In the construction industry, to evaluate the compressive strength of concrete, destructive and non-

destructive testing methods are used. Non-destructive testing methods are preferable due to the fact that those 

methods do not destroy concrete samples. However, they usually give larger percentage of error than using 

destructive tests. Among the non-destructive testing methods, the ultrasonic pulse velocity test is the popular one 

because it is economic and very simple in operation. Using the ultrasonic pulse velocity test gives 20% MAPE more 

than using destructive tests. This paper aims to improve the ultrasonic pulse velocity test results in estimating the 

compressive strength of concrete using the help of artificial intelligent. To establish a better prediction model for the 

ultrasonic pulse velocity test, data collected from 312 cylinder of concrete samples are used to develop and validate 

the model. The research results provide valuable information when using the ultrasonic pulse velocity tests to the 

inputs data in addition with support vector machine by learning algorithms, and the actual compressive strengths are 

set as the target output data to train the model. The results show that both MAPEs for the linear and nonlinear 

regression models are 11.17% and 17.66% respectively. The MAPE for the support vector machine models is 11.02%. 

These research results can provide valuable information when using the ultrasonic pulse velocity test to estimate the 

compressive strength of concrete.  

1 Introduction  

In recent years, support vector machines have been 

widely used in various sectors. Non-destructive testing 

(NDT) methods used in the construction industry to 

examine the compressive strength of concrete are not 

only important alternatives but also feasible and 

economical as well. When using destructive methods in 

the lab, the concrete compressive strength test results in 

some cases do not represent the in-situ cast concrete 

because the strength and the quality of concrete could be 

affected through the transportation process, the placement, 

tamping and curing. Moreover, taking the core samples 

on site is not always feasible since the drilling process 

might damage the structure. Therefore, non – destructive 

tests are more suitable in measuring the concrete strength 

in cases where destructive tests are not. Typically, 

ultrasonic pulse velocity (UPV) is a non-destructive 

testing method to estimate concrete compressive strength 

without damaging the concrete structure. The testing 

method can effectively evaluate the uniformity and 

relative quality of concrete structures. Besides, UPV has 

some advantages such as low cost, easier to operate and 

convenient to carry.  

The actual concrete compressive strength is a self-

compacted that refers to the unconfined compressive 

strength in geotechnical term [1]. It is a kind of self-

flowing cementitious material, also known as the flow 

able fill, the un-shrinkable fill, the controlled density fill, 

and other names [2]. UPV testing is done by measuring 

the travelling period and distance of an ultrasonic pulse, 

the ultrasonic wave velocity can be obtained through the 

travelling time and distance. It is shown in [3] that the 

better the concrete quality, the higher the ultrasonic wave 

velocity. 

To predict the concrete compressive strength, a prediction 

model is constructed. The author of [4] stated that 

Multiple Linear Regression cannot give a precise 

prediction for compressive strength. In [5], it is said that 

using Artificial Neural Network is more suitable to give 

the estimated displacement in concrete reinforcement 

building; in addition, the bearing capacity of shallow 

foundations also be determined by neuro-fuzzy models.     

The investigation constructed in this paper is a process 

using simulation, which aims to improve the accuracy of 

the results of ultrasonic pulse wave velocity mode when 

measuring concrete strength. Then with the use of the 

neural network, the support vector machine SVMs, the 

prediction and the generation of strength will be 

enhanced and predict the ultrasonic pulse velocity, this 

research aims to get the intensity value closer to the 

actual compressive strength value. In addition, this 

research will provide proof that using SVMs can improve 

the regression results and artificial models created predict 

good results.  
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2 Proposed diagnostic method 

2.1 Ultrasonic Pulse Velocity 

UPV is used to evaluate the property of concrete. UPV 

test is done based on the principle of measuring the speed 

of a pulse of ultrasonic wave passing through concrete 

knowing the traveling time and the traveling distance [6]. 

Paper [7] has the full report on the correlation between 

the compressive strength, the pulse velocity and the 

elastic modulus. In [8], a relationship between pulse 

velocity and compressive strength is also stated. [9] 

proposes an empirical equation on the relationship 

between the unconfined compressive strength (UCS) and 

the pulse velocity. The equation as below: 

                                 . bVUCS a e                 (1) 

where the properties of material will determine a and b, 

and V is the speed of ultrasonic pulse. 

2.2 UPV Experimental Setup 

In this study, the instrument used for ultrasonic pulse 

velocity test is a TICO concrete ultrasonic detector 

developed by Process Company in Zurich, Switzerland. 

As shown in Figure. 1, the instrument can perform the 

calculation and evaluation on functions of concrete 

uniformity, column hole, crack depth, elastic modulus, 

and concrete strength. The ultrasonic pulse velocity test is 

conducted in this study as follows: the measurement will 

be done four times for each of the cylindrical concrete 

sample with a circular top view of diameter 12 cm and 

height of 24 cm (refer to Figure. 2).  

The ultrasonic pulse velocity tests are conducted for each 

of the 312 test samples. The travelling distance is the 

distance L between two ends of the transducer. The 

travelling time T is the time between the excitation to the 

moment that the first pressure wave is received by the 

probe. The ultrasonic pulse velocity is the quotient of 

distance and time.   

The ultrasonic equipment consists of three parts: the 

ultrasonic pulser, the receive amplifier and the time 

measurement device that indicates the time of ultrasonic 

wave travel through the medium. The detected data is 

displayed and recorded in the control Host. 

 

Figure 1. Ultrasonic pulse velocity test and TICO ultrasonic 

pulse velocity 

To determine the velocity of ultrasonic, two quantities are 

measured: the transmission distance and the duration 

ultrasonic pulses transmitted. The ultrasonic velocity (v) 

was determined as follows:  

                                  310
l

v
t

                                      (2) 

where, l is the specimen length (peat–cement–sand brick 

with length measured in millimeters (mm)), v is the 

velocity of ultrasound (m/s) and t is the actual travelling 

time through medium of the ultrasonic pulse, measured in 

microseconds (µs). 

 

Figure 2. Model of schematic diagram of pulse velocity testing 

circuit 

According to different settings of transducers location, 

there are three possible ways of measuring pulse of 

ultrasonic pulse velocity tests [10]. Measurements can be 

made by the following methods: 

- Direct transmitter method and receiver are on two 

parallel surfaces was placed on the opposite sides of 

the concrete, pulse transmission path and the 

concrete surface perpendicular to the path length is 

the distance between two parallel transducers 

- Indirect method or surface transmission where both 

transducers are on the same surface, pulse 

transmission path as the right triangle triangular 

oblique edge, the path length of the two electro-

acoustical transducers center point distance. 

Semi-direct Methods, transmitters and receivers are on 

two mutually perpendicular surfaces or two different 

surfaces, need to put two electro-acoustical transducers at 

different distances repeated measurements, and then 

measured The return time is the average pulse wave 

velocity. 

 

Figure 3. Ultrasonic Pulse Velocity test arrangements 
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2.3. Support Vector Machines 

Developed base on statistical learning theory, Support 

Vector Machines (SVMs) is an algorithm often used for 

small scale, nonlinear or high dimensional problems. The 

foundations of SVMs have been developed by Vapnik 

[11]. It is not only well founded theoretically, but also 

superior in application domains including object 

recognition problems, prediction formula, protein 

structure prediction, functional classification and also 

been successfully used in the construction-related areas in 

recent years [12]. SVMs in this research is used to create 

the prediction model for concrete compressive strength. 

The predicted result then will be used in comparison with 

the real test result. 

In SVMs, the upper bound of generalization error has 

been minimized. This enables the ability to process data 

better than other artificial intelligence techniques even for 

unseen data [13]. Some basic concepts of SVMs model 

will be described as follow [14]. 

A dataset {( , )}n

u i iG x d  is given with input vector xu, 

target value di, and the size of the dataset n. By mapping 

x into high-dimensional feature space, the nonlinear 

regression ( )f x  in low dimensional space is represented 

as ( ) . ( )f x x b    with  is the weight vector, ( )x  

is the high dimensional feature space and b the bias of the 

hyper plane. In SVMs, by minimizing the risk penalty 

function, the parameters above can be found. 

                ^

, ( ) arg min [ ]
nn l f empf x R f                  (3) 

The empirical risk minimizing makes sense only if: 

   liml empR f R f    

Using the law of large numbers: 

   lim min min
n nl f emp fR f R f    

Next, this condition is less intuitive and requires that the 

minima also converge: 

   

2
ln( 1) ln( )

4
emp

l
h

hR f R f
l


 

   

By introducing the Lagrange multipliers:  ia  and *

ia , the 

SVMs decision function becomes: 

* *

1

( , , ) ( ) ( , )
n

i i i i i

i

f x a a a a K x x b


    

where ( , )iK x x  is defined as the Kernel Function. It is 

the inner product of x and xi in the feature spaces ψ(xi) 

and ψ(xi) respectively. There are four basic Kernel 

functions used in Support Vector Machines as follows 

[15]. 

Linear Kernel: ( , )
i

T

i j jK x x x x           

Polynomial Kernel: ( , ) ( ) , 0
i

T d

i j jK x x x x r      

Sigmoid Kernel: ( , ) tanh( )
i

T d

i j jK x x x x r    

Radial Basis Function (RBF) Kernel: 
2( , ) exp( || || ), 0i j i jK x x x x      

With  ,r  and d are Kernel parameters. 

2.4 Regression SVM  

Regression is performed by using support vector 

regression SVR, this supervised learning method 

generates an SVM by input-output mapping functions 

from a labeled training dataset. This function solves both 

classification and regression problems. Abubakar et al. 

(2013) stated that in a regression SVM, the functional 

dependence of the dependent variable y on a set of 

independent variables x has to be estimated. It assumes, 

like other regression problems, that the relationship 

between the independent and dependent variables is 

given by a deterministic function f plus the addition of 

some additive noise [16]:  

                             y = f(x) + noise                         (4) 

The task is then to find a functional form for f that can 

correctly predict new cases that the SVM has not been 

presented with before. This can be achieved by training 

the SVM model on a sample set, i.e., training set, a 

process that involves, like classification (see above), and 

the sequential optimization of an error function [17,18]. 

Depending on the definition of this error function, two 

types of SVM models can be recognized: 

For this type of SVM the error function is. 

 
The error function was minimized subject to: 

 
There are several numbers of kernels that can be used in 

Support Vector Machines models. These include linear, 

polynomial, radial basis function (RBF) and sigmoid: 

 
That is, the kernel function, represents a dot product of 

input data points mapped into the higher dimensional 

feature space by transformation O. Gamma is an 

adjustable parameter of certain kernel functions. The 

RBF is by far the most popular choice of kernel types 

used in Support Vector Machines. This is mainly because 

of their localized and finite responses across the entire 

range of the real x-axis. 

The SVR uses ε parameter (insensitive loss) to compute 

a linear regression function for a dimensional feature 

space while concurrently minimizing ||ω ||2 to reduce 

model complexity. 
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Figure 4. Support vector regression [19] 

 

Two new parameters *,i i   are introduced to solve the 

minimization problem as show figure.4. Thus, SVR is 

formulated as minimizing following constraint-

optimization problem: 

Minimize 2 *

1

1
|| ||

2

l

i i

i

C  


   subject to 

*

*

,

,

, 0

i

i

i i i

i i

i

y x b

x b y

  

  

 

      

     




  where the constant C 0  

determine the trade-off between the flatness of f(x,w) and 

the tolerance for deviations larger than   . 

2.5 Least squares support vector machine 
(LSSVM) 

The least square support vector machine (LSSVM) have 

been developed and introduced by Suykens [20]. By 

using the equality constraints instead of the inequality 

ones, the solution of LSSVM follows from solving a set 

of linear equations and the computational complexity is 

rather lower than that of SVM. 

The LSSVM helps the process of programming for 

constrained optimization in SVMs less heavy. The error 

square is used as a measure of the error condition, which 

represents the error between the output and the correct 

result. So the LSSVM guidelines is represented as 

  2 2

,
1

1 1

2 2

n

i
w

i

minQ w w


 


    , constrain: 

  . 1 ?? , ,i i iy w x b i n        

where   is the same as the regular parameter in the 

traditional SVMs. 

The aim is also to margin maximization the spacing with 

error minimization between the transactions i  is the 

wrong variable. 

The difference between the LMSVM and the traditional 

SVM is that the LSSVM is an equation and the SVM is 

an inequality, and the optimal solution for the LSSVM is 

not as sparse as the traditional SVM (Kruif & Vries, 

2003). And solve the problem of (4) optimization is the 

same as using the Lagrangian method, so LSSVM 

optimization problem to solve all the above linear 

equations of the problem, reducing the computational 

complexity. The solving process of LSSVM is mainly 

composed of two steps. Firstly, the final solution to the 

right weight vector can be gotten by the gradient descent 

algorithm. Secondly, for the fixed right weight vector in 

each iteration, an analytical solution to the left weight 

vector can be gained. The detailed description about at 

LSSVM can be found in [21]. Because the search is not 

for the sparse solution, so LSSVM does not like SVM to 

find some influential information as a support vector 

(support vector), but all the data as a support vector. 

In this research a total of 312 cylinder concrete samples 

are collected in collaborating with a local material testing 

laboratory, With 312 test samples collected in the study, 

252 of them are randomly chosen to be the training 

dataset. 60 remaining samples are used as the test group 

data. The model calculates the mean absolute percentage 

error (MAPE) and uses the Microsoft Excel 2013 and 

MATLAB 2013 suite of software to construct the 

LSSVM model. The model predicts the concrete strength 

of the concrete column will be compared with the actual 

compressive strength of the concrete column specimen, 

and further verify the model is used to predict the 

accuracy of the actual compressive strength of the 

concrete cylindrical specimen, and whether the result is 

more accurate and the construction process of the model 

is as follows figure 5. 

Step1: Import training group and test group data. 

The prediction model will use the ultrasonic wave 

velocity of the ultrasonic wave to obtain the average 

velocity V value as the input, and the compressive 

strength of the concrete is the output. In the 312 cylinder 

concrete samples, the average wave velocity (X) and the 

concrete compressive strength Y) data as the LSSVM 

model training. The optimal prediction model is found by 

the model training process. The remaining 60 remaining 

samples are set as the best prediction model for the test 

group (Xt) to calculate the average absolute error 

percentage. The model calculates the mean absolute 

percentage error (MAPE) and uses the Microsoft Excel 

2013 and MATLAB 2013 suite of software to construct 

the LSSVM model as follows: 

                           X=xlsread('X.xlsx')                            (5) 

                           Y=xlsread('Y.xlsx')                     (6) 

                         Xt=xlsread('Xt.xlsx')                   (7) 

Step2: Adjust the values of C (sigma) and γ (gama) to 

establish the LSSVM prediction model. 

In the LSSVM model analysis to adjust the value of C 

(sigma) and γ (gama), repeatedly test, adjust and record 

the relationship between sig and gam, the input item data 

set through the training group instruction training, and 

then use the test group instructions the prediction results 

are predicted and the predicted results are compared with 

the actual compressive strength and the average absolute 

error percentage is calculated until a best combination of 

the parameters is found. The import command syntax is 

as follows: 
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Training group instruction 

[alpha, b] = trainlssvm({X,Y,'f',gam, sig2})        (8) 

Test group instructions 

    Yt = simlssvm({X,Y,'f',gam, sig2},{alpha,b},Xt)     (9) 

In this research, a revolution of support vector machine 

called least square support vector machine (LSSVM) is 

used to import data into MATLAB to predict the model 

for properties of concrete after testing those properties in 

the lab. LSSVM is modified from existed SVMs and then 

the mean absolute percentage error (MAPE) is calculated. 

In figure 6, MATLAB gives the prediction strength data. 

The value for C and Y need to be setup differently for a 

better prediction model. Support vector instruction inputs 

are shown in figure 7. 

 
Figure 5. LSSVM model of the construction process 

 

 
Figure 6. MATLAB software implementation of support vector 

regression 

 

 
Figure 7. Support vector instruction inputs. 

3 Results Analysis 

SVM is developed and highly valued for combined NDTs 

(SonReb) for using UPV tests to the inputs data. The 

actual compressive strengths are set as the target output 

data to train the model. Total 312 test samples are 

collected in the lab experiment, which 252 of them are 

randomly selected as the training dataset and 60 test 

patterns and reloaded to the testing dataset. The 60 

samples in the testing dataset are “unseen” that remains 

in the data will not be seen or new data for the support 

vector machine model is trained. 

The prediction accuracy is measured by the mean 

absolute percentage error (MAPE) illustrated in the 

equation below: 

                                  
1

1 n
i i

i i

A P
MAPE

n A


    (10) 

where, Ai is the actual concrete sample compressive 

strength and Pi is the predicted strength. 

MAPE is calculated by comparing the data of the test 

group into the equation with the actual compressive 

strength. The outputs predict the estimated concrete 

compressive strength are compared directly to the actual 

compressive strength obtained. The result for model 

prediction are shown in Table 1. 

In UPV test, to detect the ultrasonic wave velocity of the 

ultrasonic wave, the setup are as follows: the transmitting 

probe and the receiving probe are placed on the upper and 

lower sides of the concrete cylindrical test specimen 

(distance 24cm); the speed of transmission of the pulse in 

the concrete specimen then calculated as mentioned in the 

introduction section. MAPE was calculated by comparing 

the data of the test group into the equation with the actual 

compressive strength. The linear and non-linear 

regression are illustrated as in figure 8 and 9, respectively. 

Table 1. Comparison of Linear and Nonlinear Regression 

Models. 

Forecasting 

model 
Prediction formula 

Standard 

deviation 

MAPE 

(%) 

Linear 

regression 
fc = 0.3713 V- 1162.8 

16.80 11.17 

Nonlinear 

regression 
fc = 0.8648exp (0.0015V) 

23.13 17.66 

Shown in figure 8, the linear regression model is  

y = 0.3713x - 1162.8, where x is the average ultrasonic 

wave velocity and y is the actual compressive strength, 

and using 60 test group data bands. The MAPE calculated 

by comparing the predicted formula with the actual 

compressive strength is 11.17%. Similarly for the non- 

linear regression in figure 9, the model is  

y = 0.8648e 0.0015x. MAPE calculated is 17.66%. 

As shown in Table 1, the compressive strength of 

concrete predicted by linear and nonlinear regression 

model is 11.17% and 17.66% respectively. It can be 
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found that the linear regression model is better than the 

non-linear regression one. In this study, we try different 

kinds of artificial intelligence methods to correct the 

inaccuracy of ultrasonic wave velocity prediction, and to 

establish different types of concrete strength estimation 

system for improving the reliability of concrete strength 

when using the ultrasonic wave velocity. 

  

Figure 8. Linear regression graphs. 

In this research a total of 312 cylinder concrete samples 

are collected in collaborating with a local material testing 

laboratory, 252 cylinder of them are randomly chosen to 

be the training dataset. 60 cylinder remaining samples are 

used as the test group data. The model calculates the 

mean absolute percentage error (MAPE) and uses the 

Microsoft Excel 2013 and MATLAB 2013 suite of 

software to construct the LSSVM model. And the data 

according to the program required to be organized into 

the variable X (252 cylinder training group data) the 

average velocity and strain Y (252 cylinder training 

group data of the actual strength) xlsx. File into the 

Matlab software by adjusting the C (sig) and γ (gam) 

value to get the best predictive model, and finally Xt (the 

remaining 60 test group data) as a model Of the test 

group data into the best prediction model and calculate 

the average absolute error percentage. 

 

Figure 9. Non-linear regression graphs. 

In the majority of the routing stations, the settings of 

input variable were randomly selected as the test samples 

for the least square support vector machine (LSSVM) 

methods. For this models, the actual compressive strength 

is set up as input variable. In the case of trial and error, 

we set the γ (Gamma) value change from 200 to 100000, 

we adjust the C (Sigma) value from 2 to 512 in order to 

searching and comparing with the actual compressive 

strength to get the best parameter (Table 2). 

A total of 312 samples, the settings of input variable were 

randomly selected as the test samples for the support 

vector machine (SVM) methods. For this models, the 

actual compressive strength is set up as output variable. 

The model prediction results are summarized in Table 3. 

The results show that the best MAPE values of 11.02% 

respectively was obtained by SVMs test with the 

remaining 60 data as the model. The results show that the 

prediction results are improved by means of artificial 

intelligence. The model does improve the prediction 

accuracy of concrete compressive strength. When 

attempting to increase the input of the model, the results 

show that the maximum error rate of the concrete is less 

than 9.996% and 10.495% respectively for SVMs 

methods. The results are better than the predictions of the 

one input and two input, which proves that the increase in 

the input of the model can reduce the mean absolute 

percentage error. 

4 Conclusion 

To improve the result of non-destructive tests, SVMs is 

used in order to predict the concrete compressive strength. 

Within 312 test samples, 252 test samples are randomly 

chosen to be the train data set for SVMs. The remained 

60 test samples are set as the data set to evaluate the 

prediction model accuracy. The model the support vector 

machine is developed 

The results shows that MAPE is about 20%, and the 

compressive strength of the concrete predicted by the 

linear and nonlinear regression model is 11.17% and 

17.66% respectively. Therefore, the study show the 

establishing a predictive strength model with the goal for 

the intensity of ultrasonic wave velocity detection method 

becomes more reliable, and also increasing the prediction 

accuracy. Comparing the prediction of three models 

mentioned, the best MAPE values of 11.02% is obtained 

by the SVM test. In addition, the prediction results from 

one input (average ultrasonic pulse wave velocity) and 

two input (average ultrasonic pulse wave velocity and 

standard deviation) show that the maximum error rate of 

the concrete is less than 9.996% and 10.495% the mean 

absolute percentage error of the model. Which imply that 

the results are better than the predictions of the three 

input (3 velocity ultrasound V values). For the collected 

sample, the research results have shown that the increase 

in the input of the model can reduce the absolute error 

percentage. 
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Table 2. The LSSVM models prediction accuracy (one input, 

two input, three input). 

 One input Two input Three input 

γ C MAPE C MAPE C MAPE 

200 2 9.595% 2 9.604% 2 10.981% 

200 4 9.685% 4 9.592% 4 10.874% 

200 8 9.700% 8 9.687% 8 11.104% 

200 16 9.772% 16 9.797% 16 11.082% 

200 32 9.873% 32 9.891% 32 11.100% 

200 64 9.955% 64 9.981% 64 11.193% 

200 128 9.996% 128 10.096% 128 11.248% 

200 256 10.029% 256 10.179% 256 11.256% 

200 512 10.051% 512 10.195% 512 11.244% 

200 2 9.595% 4 9.592% 4 10.874% 

400 2 9.565% 4 9.686% 4 10.872% 

800 2 9.535% 4 9.665% 4 10.860% 

1000 2 9.486% 4 9.631% 4 10.855% 

1500 2 9.452% 4 9.617% 4 10.889% 

3000 2 9.476% 4 9.565% 4 10.889% 

6000 2 9.471% 4 9.597% 4 10.978% 

20000 2 9.483% 4 9.574% 4 11.099% 

50000 2 9.489% 4 9.613% 4 11.518% 

60000 2 9.634% 4 9.634% 4 11.879% 

75000 2 9.719% 4 9.719% 4 12.025% 

100000 2 9.720% 4 9.720% 4 12.225% 

Table 3. The results of the test group data into the SVM model. 

SVM  

Model 

C γ Standard 

deviation 

Training 

MAPE 

(%) 

Testing 

MAPE 

(%) 

One input 2 1500 14.41 9.452 10.495 

Two input 4 3000 14.11 9.565 9.996 

Three input 4 1000 16.38 10.855 11.02 
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