Open Access
Issue |
MATEC Web Conf.
Volume 200, 2018
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18)
|
|
---|---|---|
Article Number | 00014 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201820000014 | |
Published online | 14 September 2018 |
- EUROCAE-WG-41: ED-117, MOPS for Mode S multilateration systems for use in advanced surface movement guidance and control systems (ASMGCS). In: The European Organisation for Civil Aviation Equipment (EUROCAE) (November 2003). [Google Scholar]
- EUROCAE-WG-70: ED-142, technical specification for wide area multilateration (WAM) systems. In: The European Organisation for Civil Aviation Equipment (EUROCAE) (September 2010). [Google Scholar]
- W.R. Hahn, S.A. Tretter, Optimum processing for delay-vector estimation in passive signal arrays. IEEE Trans. Inf. Theory IT-19(5), 608–614 (1973) [CrossRef] [Google Scholar]
- J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923. [Google Scholar]
- M. Leonardi, A. Mathias, G. Galati, Two efcient localization algorithms for multilateration. Int. J. Microw. Wirel. Technol, 1 (2009), 223–229. [CrossRef] [Google Scholar]
- G. Galati, M. Leonardi, M. Tosti, Multilateration (local and widearea) as a distributed sensor system: lower bounds of accuracy, in European Radar Conf, EuRAD, Amsterdam, 30–31 October 2008. [Google Scholar]
- W.H. Foy, Position-location solutionby Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst., AES-12, (1976), 187–194. [CrossRef] [Google Scholar]
- D.J. Torrieri, Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst., AES-20, (1984), 183–198. [CrossRef] [Google Scholar]
- I.A. Mantilla-Gaviria, M. Leonardi, G. Galati, J.V. Balbastre-Tejedor and E.D.L.R. Davó, Efficient location strategy for airport surveillance using Mode-S multilateration systems. International Journal of Microwave and Wireless Technologies, 4(2), 209–216, 2012. [CrossRef] [Google Scholar]
- K. Yang, J. An, X. Bu, G. Sun, Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol. 59(3), 1558–1562 (2010) [Google Scholar]
- I.A. Mantilla-Gaviria, M. Leonardi, J.V. Balbastre-Tejedor, Edl. Reyes, On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Math. Comput. Model. 57(7-8), 1999–2008 (2013). [CrossRef] [Google Scholar]
- M. Geyer and A. Daskalakis, Solving passive multilateration equations using Bancroft’s algorithm, in Digital Avionics Systems Conference, Bellevue, WA, USA, 1998, pp. F41/1–F41/8. [Google Scholar]
- S. Bancroft, An algebraic solution of the GPS equations, IEEE Transactions on Aerospace and Electronic System, vol. AES-21, pp. 56–59, January 1985. [CrossRef] [Google Scholar]
- R.O. Schmidt, A new approach to geometry of range difference location, IEEE Transactions on Aerospace and Electronic System, vol. AES-8, pp. 821–835, Nov. 1972. [CrossRef] [Google Scholar]
- G. Galati, M. Leonardi, M. Tosti, Multilateration (local and wide area) as a distributed sensor system: lower bounds of accuracy, in European Radar Conf. EuRAD, Amsterdam, 30–31 October 2008. [Google Scholar]
- E. Perl, M.J. Gerry, Target localization using TDOA distributed antenna, US 2005/0035897 A1, USA, 17 February 2005. [Google Scholar]
- B. Abou El Majd, J.A. Désidéri and A. Habbal, Aerodynamic and structural optimization of a businessjet wingshape by a Nash game and an adapted split of variables. Mécanique Industries, 11(3-4), 209–214, 2010. [CrossRef] [Google Scholar]
- R. Duvigneau, B. Abou El Majd and J.A. Désidéri. Towards a self-adaptive parameterization for aerodynamic shape optimization. In ESAIM: Proceedings (Vol. 22, pp. 169–174). EDP Sciences, 2008. [CrossRef] [Google Scholar]
- J.A. Désidéri, R. Duvigneau, B. Abou El Majd and Z. Tang, Algorithms for efficient shape optimization in aerodynamics and coupled disciplines. In 42nd AAAF Congress on Applied Aerodynamics, Sophia Antipolis, France, 2007. [Google Scholar]
- J. Nash. Two-person cooperative games. Econometrica: Journal of the Econometric Society, pages 128–140, 1953. [CrossRef] [Google Scholar]
- A. Eiben and J. Smith, Introduction to Evolutionary Computing. Springer Verlag, 2003. [Google Scholar]
- W.F. Fihri, Y. Arjoune, H. El Ghazi, N. Kaabouch and B. Abou El Majd, A particle swarm optimization based algorithm for primary user emulation attack detection. In: IEEE consumer communications and networking conference, p. 1–6, 2018. [Google Scholar]
- C.A.C. Coello, D.A.V. Veldhuizen, and G.B. Lamont, Evolutionary Algorithms for Solving MultiObjective Problems. Kluwer Academic Publishers, 2002. [Google Scholar]
- K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, 2001. [Google Scholar]
- A. Raghib, B. Abou El Majd, and B. Aghezzaf, An Optimal Deployment of Readers for RFID Network Planning using NSGA-II. In Recent Developments in Metaheuristics, Operations Research/Computer Science Interfaces Series, Springer, Vol. 62, p. 463–476, 2018. [CrossRef] [Google Scholar]
- H. Rahil, B. Abou El Majd, and M. Bouchoum, Optimized Air Routes Connections for Real Hub Schedule Using SMPSO Algorithm. In Recent Developments in Metaheuristics, Operations Research/Computer Science Interfaces Series, Springer, Vol. 62, p. 369–384, 2018. [CrossRef] [Google Scholar]
- K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 182–197, 2000. [Google Scholar]
- R. Fadil, B. Abou El Majd, H. Rahil, H. El Ghazi and N. Kaabouch, Multi-objective Optimization Approach for Air Traffic Flow Management. In: MATEC Web of Conferences 105, 0005, 2017. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.