Open Access
Issue
MATEC Web Conf.
Volume 200, 2018
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18)
Article Number 00011
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/201820000011
Published online 14 September 2018
  1. B. Abou El Majd, J.A. Désidéri and A. Habbal, “ Aerodynamic and structural optimization of a business-jet wingshape by a Nash game and an adapted split of variables”. Mécanique Industries, 11(3-4), 209–214, 2010. [CrossRef] [Google Scholar]
  2. Ab-Samat, Hasnida, and S. Kamaruddin. “ Opportunistic maintenance (OM) as a new advancement in maintenance approaches: A review”.Journal of Quality in Maintenance Engineering 20.2, 98–121, 2014. [CrossRef] [Google Scholar]
  3. S. Alaswad and Y. Xiang, “ A review on conditionbased maintenance optimization models for stochastically deteriorating system”, Reliab. Eng. Syst. Saf., Vol. 157, p. 54–63, janv. 2017. [Google Scholar]
  4. P. Baraldi, F. Cadini, F. Mangili, et E. Zio,“ Model-based and data-driven prognostics under different available information”, Probabilistic Eng. Mech., Vol. 32, p. 66–79, 2013. [CrossRef] [Google Scholar]
  5. K. Bouvard, S. Artus, C. Bérenguer, et V. Cocquempot,“ Condition-based dynamic maintenance operations planning and grouping. Application to commercial heavy vehicles”, Reliab. Eng. Syst. Saf., Vol. 96, no 6, p. 601–610, june 2011. [CrossRef] [Google Scholar]
  6. R. Dawid, D. McMillan, and M. Revie, “ Review of Markov models for maintenance optimization in the context of offshore wind”, 2015. [Google Scholar]
  7. R. Duvigneau, B. Abou El Majd and J.A. Désidéri. “ Towards a self-adaptive parameterization for aerodynamic shape optimization”. In ESAIM: Proceedings (Vol. 22, pp. 169–174). EDP Sciences, 2008. [CrossRef] [Google Scholar]
  8. K.C. Dey, A. Mishra, and M. Chowdhury, “ Potential of intelligent transportation systems in mitigating adverse weather impacts on road mobility: a review”, IEEE Transactions on Intelligent Transportation Systems, Vol. 16, no. 3, pp. 1107–1119, 2015. [CrossRef] [Google Scholar]
  9. J.A. Désidéri, R. Duvigneau, B. Abou El Majd and Z. Tang, “ Algorithms for efficient shape optimization in aerodynamics and coupled disciplines”. In 42nd AAAF Congress on Applied Aerodynamics, Sophia-Antipolis, France, 2007. [Google Scholar]
  10. R. Fadil, B. Abou El Majd, H. Rahil, H. El Ghazi and N. Kaabouch, “ Multi-objective Optimization Approach for Air Traffic Flow Management”. In: MATEC Web of Conferences, 105, 0005, 2017. [CrossRef] [EDP Sciences] [Google Scholar]
  11. W.F. Fihri, Y. Arjoune, H. El Ghazi, N. Kaabouch and B. Abou El Majd, “ A particle swarm optimization based algorithm for primary user emulation attack detection”. In: IEEE consumer communications and networking conference, p. 1–6, 2018. [Google Scholar]
  12. K. He, L.M. Maillart, and O.A. Prokopyev, “ Scheduling Preventive Maintenance as a Function of an Imperfect Inspection Interval”, IEEE Transactions on Reliability, Vol. 64, no. 3, pp. 983–997, Sep. 2015. [CrossRef] [Google Scholar]
  13. K.T. Huynh, A. Barros, and C. Bérenguer, “ Maintenance decision-making for systems operating under indirect condition monitoring: value of online information and impact of measurement uncertainty”, IEEE Trans.Reliab., Vol. 61, no 2, p.410–425, 2012. [CrossRef] [Google Scholar]
  14. S.K. Kinnunen et al., “ Decision making situations define data requirements in fleet asset management”, in Proceedings of the 10th World Congress on Engineering Asset Management (WCEAM 2015), 2016, p. 357–364. [CrossRef] [Google Scholar]
  15. A. Le Mortellec, J. Clarhaut, Y. Sallez, T. Berger and D. Trentesaux, “ Embedded holonic fault diagnosis of complex transportation systems”. Engineering Applications of Artificial Intelligence, 26(1), 227–240, 2013. [CrossRef] [Google Scholar]
  16. R. Lesobre, “ Modélisation et optimisation de la maintenance et de la surveillance des systèmes multi-composants-Applications à la maintenance et à la conception de véhicules industriels”, PhD Thesis, Université Grenoble Alpes, 2015. [Google Scholar]
  17. A.J. Nebro, J.J. Durillo, J. García-Nieto, C.A. Coello Coello, F. Luna, and E. Alba. “ Smpso: A new pso-based metaheuristic for multi-objective optimization”. In 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MCDM 2009), pages 66–73. IEEE Press, 2009. [CrossRef] [Google Scholar]
  18. J. Nash. “ Two-person cooperative games”. Econometrica: Journal ofthe Econometric Society, pages 128–140, 1953. [Google Scholar]
  19. R.P. Nicolai and R. Dekker, “ A review of multicomponent maintenance models”, In : Proc. of European Safety and Reliability Conference ESREL. 2007. [Google Scholar]
  20. M. Reyes and C.A. Coello Coello. “ Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance” In C.A. Coello, A. Hernández, and E. Zitler, editors, Third International Conference on Evolutionary MultiCriterion Optimization, EMO 2005, volume 3410 of LNCS, pages 509–519. Springer, 2005. [Google Scholar]
  21. H. Rahil, B. Abou El Majd, and M. Bouchoum, “ Optimized Air Routes Connections for Real Hub Schedule Using SMPSO Algorithm”. In : Recent Developments in Metaheuristics, Springer, Cham, p. 369–384, 2018. [Google Scholar]
  22. Y. Sallez, T. Berger, D. Deneux and D. Trentesaux, “ The lifecycle of active and intelligent products: The augmentation concept”, International Journal ofComputer Integrated Manufacturing, 23, 905–924, 2010. [CrossRef] [Google Scholar]
  23. Y. Sallez, T. Berger and D. Trentesaux, “ A stigmergic approach for dynamic routing of active products in fms”, Computers in Industry, 60, 204–216, 2009. [CrossRef] [Google Scholar]
  24. O. Senechal and D. Trenteseaux, “ Spécification d’une méthodologie pour l’aide à la décision dans le cadre de la maintenance basée sur la performance environnementale Application aux systèmes ferroviaires.”, Congrès International de Génie Industriel (CIGI), Compiègne, France, may 2017. [Google Scholar]
  25. O. Svensson, S. Thelin, S. Byttner, et Y. Fan,“ Indirect Tire Monitoring System - Machine Learning Approach”, IOP Conf. Ser. Mater. Sci. Eng., Vol. 252, p. 012018, oct. 2017. [CrossRef] [Google Scholar]
  26. H.C. Vu, P. Do, A. Barros, and C. Bérenguer, “Maintenance grouping strategy for multi-component systems with dynamic contexts”, Reliability Engineering and System Safety, Vol. 132, pp. 233–249, Dec. 2014. [CrossRef] [Google Scholar]
  27. H. Wang, L. Jiao, and X. Yao, “s Two Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization”, IEEE Transactions on Evolutionary Computation, Vol. 19, no. 4, pp. 524–541, Aug. 2015. [CrossRef] [Google Scholar]
  28. L. Xiao, S. Song, X. Chen, and D.W. Coit, “ Joint optimization of production scheduling and machine group preventive maintenance”, Reliability Engineering and System Safety, Vol. 146, pp. 68–78, Feb. 2016. [CrossRef] [Google Scholar]
  29. M. Yildirim, X.A. Sun, et N.Z. Gebraeel,“ Sensor-driven condition-based generator maintenance scheduling—Part I: Maintenance problem”, IEEE Trans. PowerSyst., Vol. 31, no 6, p. 4253–4262, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.