Open Access
MATEC Web Conf.
Volume 200, 2018
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18)
Article Number 00012
Number of page(s) 4
Published online 14 September 2018
  1. C. Wang, S. Hwang, A stochastic maintenance management model with recovery factor. Journal of Quality in Maintenance Engineering, 10, 2: 154–65 (2004). [CrossRef] [Google Scholar]
  2. A. Parida, U. Kumar, D. Galar, C. Stenström. Performance measurement and management for maintenance: a literature review. Journal of Quality in Maintenance Engineering, 21, 1: 2–33 (2015). [CrossRef] [Google Scholar]
  3. A. Tsang. A strategic approach to managing maintenance performance. Journal of Quality in Maintenance Engineering, 4, 2: 87–94 (1998). [CrossRef] [Google Scholar]
  4. U. Kumar, D. Gal, A. Parida, C. Stenström, L. Berges, Maintenance performance metrics: a state-of-the-art review. Journal of Quality in Maintenance Engineering, 19, 3: 233–277 (2013). [CrossRef] [Google Scholar]
  5. P. Muchiri, L. Pintelon, L. Gelders, H. Martin. Development of maintenance function performance measurement framework and indicators. International Journal of Production Economics, 13, 1: 295–302 (2011). [CrossRef] [Google Scholar]
  6. A. Parida, T. Åhrén, and U. Kumar, U. Integrating maintenance performance with corporate balanced scorecard. Proceedings of COMADEM 2003: 53–59 (2003). [Google Scholar]
  7. A. Neely, M. Gregory, K. Platts. Performance measurement system design: a literature review and research agenda. International journal of operations & production management, 15, 4: 80–116, (2005). [CrossRef] [Google Scholar]
  8. L. Berrah, G. Mauris, A. Haurat, L. Foulloy. Global vision and performance indicators for an industrial improvement approach. Computers in Industry, 43, 3: 211–225, (2000). [CrossRef] [Google Scholar]
  9. C. Stenström, A. Parida, D. Galar. Performance indicators of railway infrastructure. The international Journal of railway technology, 1, 3: 1–18 (2012). [CrossRef] [Google Scholar]
  10. K.Y, Kutucuoglo. J, Hamali. Z, Irani, J.M, Sharp. A framework for managing maintenance using performance measurement systems, International Journal of Operation and Production Management, 21, 1: 173–194 (2001). [CrossRef] [Google Scholar]
  11. L. A, Zadeh. Information and control. Fuzzy sets, 8, 3: 338–353 (1965). [Google Scholar]
  12. B. Al-Najjar, I. Alsyouf. Selecting the most efficient maintenance approach using fuzzy multiple criteria decision-making. International journal of production economics, 84, 1: 85–100 (2003). [CrossRef] [Google Scholar]
  13. M. Grabisch. The application of fuzzy integrals in multicriteria decision-making. European journal of operational research. 89, 3: 445–456 (1996). [CrossRef] [Google Scholar]
  14. M. L. Tseng, J. H. Chiang, L. W. Lan. Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral. Computers & Industrial Engineering, 57, 1: 330–340 (2009). [CrossRef] [Google Scholar]
  15. N. Yalcin, A. Bayrakdaroglu, C. Kahraman. Application of fuzzy multi-criteria decision-making methods for financial performance evaluation of Turkish manufacturing industries. Expert Systems with Applications. 39, 1: 350–364, (2012). [CrossRef] [Google Scholar]
  16. A. Shemshadi, H. Shirazi, M. Toreihi, and M.J Tarokh. A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Systems with Applications. 38, 10: 12160–12167 (2011). [CrossRef] [Google Scholar]
  17. S. Opricovic, G.H. Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 5: 635–652 (2003). [CrossRef] [Google Scholar]
  18. C.A. Bana e Costa, J.C. Vansnick. Applications of the MACBETH approach in the framework of an additive aggregation model. Journal of Multi-Criteria Decision Analysis, 6, 2: pp. 107–114 (1997). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.