Open Access
Issue
MATEC Web Conf.
Volume 200, 2018
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18)
Article Number 00005
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/201820000005
Published online 14 September 2018
  1. J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proc. IEEE Int. Conf. Neural Networks, 1942–1948 (1995) [CrossRef] [Google Scholar]
  2. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines, J. of Chemical Physics 21(6), 1087–1091 (1953) [CrossRef] [Google Scholar]
  3. S. Kirpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Sc. 220, 671–680 (1983) [Google Scholar]
  4. A.A. Kannan, G. Mao, B. Vucetic, Simulated annealing based localization in wireless sensor network, Proc. IEEE Conf. LCN’05, 513–514 (2005) [Google Scholar]
  5. J. Moré, Z. Wu, Global continuation for distance geometry problems, SIAM J. Opt. 7, 814–836 (1997) [CrossRef] [Google Scholar]
  6. G.F. Nan, M.Q. Li, J. Li, Estimation of node localization with a real-coded genetic algorithm in WSNs, Proc. Int. Conf. on Machine Learning and Cybernetics 2, 873–878 (2007) [CrossRef] [Google Scholar]
  7. R.C. Abreu, J.E.C. Arroyo, A Particle Swarm Optimization Algorithm for topology Control in Wireless Sensor Networks, Inter. Conf. Chilean (2011) [Google Scholar]
  8. J.J. Gnana Chandran, S.P. Victor, An Energy Efficient Localization Technique Using Particle Swarm Optimization in Mobile Wireless Sensor Networks, American J. of Sc. Res., 33–48 (2010) [Google Scholar]
  9. R.V. Kulkarni, G.K. Venayagamoorthy, A. Miller, C.H. Dagli, Network-centric Localization in MANETs based on Particle Swarm Optimization IEEE Swarm Intelligence Symp., 1–6(2008) [Google Scholar]
  10. J. Aspnes, W. Whiteley, Y.R. Yang, IEEE Trans. mobile computing, A theory of network localization, 5(12), 1663–1678 (2006) [Google Scholar]
  11. P. Biswas, Y. Ye, Proc. 3rd Int. Symp. on Information Processing in Sensor Networks, 46–54 (2004) [Google Scholar]
  12. T.-C. Liang, T.-C. Wang, Y. Ye, A gradient search method to round the semidefinite programming relaxation solution for ad hoc wireless sensor network localization, Technical report, Stanford University (2004) [Google Scholar]
  13. H. Lakhbab, S. El Bernoussi, Int. J. of Math. Analysis 6, (2012) [Google Scholar]
  14. F. Javidrad, M. Nazari, A new hybrid particle swarm and simulated annealing stochastic optimization method, Appl. Soft. Comp. 60, 634–654 (2017) [CrossRef] [Google Scholar]
  15. M. Basu, P. Deb, G. Garai, Hybrid of Particle Swarm Optimization and Simulated Annealing for Multidimensional Function Optimization, Inter. J. Information Technology 20(1), 34–45 (2014) [Google Scholar]
  16. M. Bahrepour, E. Mahdipour, R. Cheloi, M. Yaghoobi, Super-sapso: a new sa-based pso algorithm, Appl. of Soft Comp. 58, 423–430 (2009) [CrossRef] [Google Scholar]
  17. G. Yang, D. Chen, G. Zhou, A new hybrid algorithm of particle swarm optimization, Lecture Notes in Comp. Sc. 4115, 50–60 (2006) [CrossRef] [Google Scholar]
  18. N. Sadati, M. Zamani, H. Mahdavian, Hybrid particle swarm-based simulated annealing optimization techniques Proc. IEEE Industrial Electronics Conf. 644–648 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.