Issue |
MATEC Web Conf.
Volume 200, 2018
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’18)
|
|
---|---|---|
Article Number | 00005 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/matecconf/201820000005 | |
Published online | 14 September 2018 |
A Novel Hybrid Approach for Optimizing the Localization of Wireless Sensor Networks
LIMSAD Laboratory, Faculty of Sciences Aïn Chock Casablanca, Hassan II University, Morocco
* e-mail: halimalakhbab@yahoo.fr
Wireless sensor networks are used for monitoring the environment and controlling the physical environment. Information gathered by the sensors is only useful if the positions of the sensors are known. One of the solutions for this problem is Global Positioning System (GPS). However, this approach is prohibitively costly; both in terms of hardware and power requirements. Localization is defined as finding the physical coordinates of a group of nodes. Localization is classified as an unconstrained optimization problem. In this work, we propose a new algorithm to tackle the problem of localization; the algorithm is based on a hybridization of Particle Swarm Optimization (PSO) and Simulated Annealing (SA). Simulation results are given to illustrate the robustness and efficiency of the presented algorithm.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.