Open Access
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 03003
Number of page(s) 7
Section Computer Science
Published online 12 September 2018
  1. S.M.A. Erhahman, A. Abraham, A Review of Class Imbalance Problem, J. of Network and Innovative Computing 1, pp. 332-340 (2014) [Google Scholar]
  2. Hartono, O.S. Sitompul, Tulus, and E.B. Nababan, Optimization Model of K-Means Clustering Using Artificial Neural Networks to Handle Class Imbalance Problem, IOP Conf. Ser. Mater. Sci. Eng., vol. 288, p. 012075, Jan. 2018. [CrossRef] [Google Scholar]
  3. M. Galar, A. Fernandez, E. Barrenechea & H. Bustince H, A Review on Ensembles for the Class Imbalance Problem: Bagging, Boosting, and Hybrid-Based Approachs. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 42, pp. 463-484 (2012) [CrossRef] [Google Scholar]
  4. Hartono, O.S. Sitompul, E.B. Nababan, Tulus, D. Abdullah, A.S. Ahmar, A New Diversity Technique for Imbalance Learning Ensembles, Int. J. Eng. Technol. 7 (2), pp. 478-483 (2018) [Google Scholar]
  5. S. Ertekin, J. Huang, C.L. Giles, Active Learning for Class Imbalance Problem, Proceedings of the 30th annual international ACM SIGIR conference on Research and Development in Information Retrieval, pp. 823-824 (2007) [Google Scholar]
  6. M. Alibeigi, S. Hashemi, A. Hamzeh, DBFS: An Effective Density Based Feature Selection Scheme for Small Sample Size, and High Dimensional Imbalanced Data Sets. Data Knowledges Engineering 81, pp. 67-103 (2012) [CrossRef] [Google Scholar]
  7. M. Galar, A. Fernandez, E. Barrenechea, F. Herrera, EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-Sets by Evolutionary Undersampling, Pattern Recognition 46, pp. 3460-3471 (2013) [CrossRef] [Google Scholar]
  8. A. Fernandez, V. Lopez, M. Galar, M.J.D. Jesus, F. Herrera, Analyzing the Classification of Imbalanced Data-Sets with Multiple Classes: Binarization Techniques and Ad-hoc Approaches. Knowledge-Based Systems 42, pp. 97-110 (2013) [CrossRef] [Google Scholar]
  9. M.J. Zaki, W. Meira Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press (2014) [Google Scholar]
  10. S. Almuhaideb, M.E.B. Menai, Impact of Preprocessing on Medical Data Classification. Frontiers of Computer Science 10, pp. 1082-1102 (2016) [CrossRef] [Google Scholar]
  11. B. Krawczyk, G. Schaefer, M. Wozniak, A Hybrid Cost-Senstivie Ensemble for Imbalanced Breast Thermogram Classification. Artificial Intelligence in Medicine 65, pp. 219-227 (2015) [CrossRef] [Google Scholar]
  12. F.D.P. Jose, J.J. Rodriguez, C.G. Osorio, L.I. Kuncheva, Random Balance: Ensembles of Variable Priors Classifiers for Imbalanced Data, Knowledge-Based Systems 85, pp. 96-111 (2015) [CrossRef] [Google Scholar]
  13. C. Jian, J. Gao, Y. Ao, A New Sampling Method for Classifying Imbalanced Data Based on Support Vector Machine Ensemble, Neurocomputing 193, pp. 115-122 (2016) [CrossRef] [Google Scholar]
  14. B. Tang, H. He, GIR-Based Ensemble Sampling Approaches for Imbalanced Learning. Pattern Recognition 71, pp. 306-319 (2017) [CrossRef] [Google Scholar]
  15. F. Ren, P. Cao, W. Li, D. Zhao, O. Zaiane, Ensemble Based Adaptive Over-Sampling Method for Imbalanced Data Learning in Computer Aided Detection of Microaneurysm. Computerized Medical Imaging and Graphics 55, pp. 54-67 (2017) [CrossRef] [Google Scholar]
  16. J. Gong J. H. Kim, RHSBoost: Improving Classification Performance in Imbalance Data. Computational Statistics & Data Analysis 111, 1-13 (2017) [CrossRef] [Google Scholar]
  17. W. Lu, S. Li, J.. Chu, Adaptive Ensemble Undersampling-Boost: A Novel Learning Framework for Imbalanced Data. Journal of Systems and Software 132, pp. 272-282 (2017) [CrossRef] [Google Scholar]
  18. Hartono, O.S. Sitompul, Tulus, E.B. Nababan, Biased support vector machine and weighted-smote in handling class imbalance problem, International Journal of Advances in Intelligent Informatics 4, 1, pp. 21-27 (2018) [CrossRef] [Google Scholar]
  19. KEEL: A software tool to assess evolutionary algorithms for Data Mining problems (regression, classification, clustering, pattern mining and so on).” [Online]. Available: datasets.php. [Accessed: 29-April-2018]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.