Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 5 | |
Section | Computer and Information technologies | |
DOI | https://doi.org/10.1051/matecconf/20165601008 | |
Published online | 26 April 2016 |
Improving the vector auto regression technique for time-series link prediction by using support vector machine
Ateneo de Manila University, Department of Information Systems and Computer Science, Quezon City, Philippines
Predicting links between the nodes of a graph has become an important Data Mining task because of its direct applications to biology, social networking, communication surveillance, and other domains. Recent literature in time-series link prediction has shown that the Vector Auto Regression (VAR) technique is one of the most accurate for this problem. In this study, we apply Support Vector Machine (SVM) to improve the VAR technique that uses an unweighted adjacency matrix along with 5 matrices: Common Neighbor (CN), Adamic-Adar (AA), Jaccard’s Coefficient (JC), Preferential Attachment (PA), and Research Allocation Index (RA). A DBLP dataset covering the years from 2003 until 2013 was collected and transformed into time-sliced graph representations. The appropriate matrices were computed from these graphs, mapped to the feature space, and then used to build baseline VAR models with lag of 2 and some corresponding SVM classifiers. Using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) as the main fitness metric, the average result of 82.04% for the VAR was improved to 84.78% with SVM. Additional experiments to handle the highly imbalanced dataset by oversampling with SMOTE and undersampling with K-means clusters, however, did not improve the average AUC-ROC of the baseline SVM.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.