Open Access
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
Article Number 02055
Number of page(s) 4
Section Track 2: Mechanical, Mechatronics and Civil Engineering
Published online 14 August 2018
  1. Fragassa C., Berardi L., Balsamini G. Magnetorheological fluid devices: an advanced solution for active control. Faculty of Mechanical Engineering, (2016) 333-339. [Google Scholar]
  2. García J., Rodríguez C. Diseño de una Prótesis Transtibial Amortiguada. México DF. México: Instituto Politécnico Nacional, (2012). [Google Scholar]
  3. Gonzales M., & al, e. Amputación de extremidad inferior y discapacidad. Prótesis y Rehabilitación. Barcelona: Masson, (2005). [Google Scholar]
  4. Victor Ragusilaa, M. Reza Emami. Mechatronics by analogy and application to legged locomotion, Mechatronics, Inform. Process. 000(2016) 1–19. [Google Scholar]
  5. Michael R Tucker, Jeremy Olivier, Anna Pagel, Hannes Bleuler, Mohamed Bouri, Olivier Lambercy, José del R Millán, Robert Riener, Heike Vallery, Roger Gassert. Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of NeuroEngineering and Rehabilitation, 12(1)(2015). [Google Scholar]
  6. Andrés G, Luis C, Diseño y construcción de protesis de miembro inferior monitoreado desde un computador personal, (2015). [Google Scholar]
  7. Au, Samuel K., Weber J., Herr H. Powered ankle--foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1)(2009), 51-66. [CrossRef] [Google Scholar]
  8. Martinez V., E. Mooney L., Elliott G., Herr H. Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. In Engineering in Medicine and Biology Society. (2011) 8519-8522. [Google Scholar]
  9. Farris R. J., Quintero H. A., Murray S. A., Ha K. H., Hartigan C., Goldfarb M. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia. IEEE Transactions on neural systems and rehabilitation engineering, 22(3)(2014) 482-490. [CrossRef] [Google Scholar]
  10. Zhan H, Liao C, Chen W, Huang S, A magnetic design method of MR fluid dampers an FEM analysis on magnetic saturation, (2006), [Google Scholar]
  11. H.M., L., G., S., C., G., & C., K. Reliable Plate-Plate MRF Magneto-Rheometry Based on Validated Radial Magnetic Flux Density Profile Simulations. Rheo, (2008). [Google Scholar]
  12. Lema, V. (Julio de 2013). Comparación estadística de medidas antropométricas entre mestizos, afroecuatorianos e indígenas del Ecuador., [Google Scholar]
  13. Antonio, J., & Mas, D. (2015). Recuperado el 07 de Agosto de 2017, [Google Scholar]
  14. Rajtukova, V, Michaliková, M, Bednarciková, L, Balogová, A, Zicak, Biomechanics of lower limb prostheses, 2014. [Google Scholar]
  15. Yang G., Spencer Jr., B., Carlson J., Sain M.. Large-scale MR fluid dampers: Modeling and dynamic performance considerations, ELSEVIER. (2002) 309-323. [Google Scholar]
  16. Richard G. Budynas, kate Gleason, Shigley´s mechanical engineering design-Tenth editionMexico: McGraw-Hill., 2014. [Google Scholar]
  17. R. Mott, Resistencia de materiales, Mexico: Pearson educación, S.A., 2009. [Google Scholar]
  18. F. D. Goncalves, M. Ahmadiam y J. D. Carlson, Investigating the magnetoreological effect at high Flow velocities, 2006. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.