Open Access
Issue
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
Article Number 01049
Number of page(s) 4
Section Track 1: Industrial Engineering, Materials and Manufacturing
DOI https://doi.org/10.1051/matecconf/201819201049
Published online 14 August 2018
  1. Van der Elst, M., Klein, C. P. A. T., de Blieck-Hogervorst, J. M., Patka, P., & Haarman, H. T. M. (1999). Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: a long-term in vivo study in sheep femora. Biomaterials, 20(2), 121-128. [CrossRef] [Google Scholar]
  2. Friedman, R. J., Black, J., Galante, J. O., Jacobs, J. J., & Skinner, H. B. (1993). Current concepts in orthopaedic biomaterials and implant fixation. JBJS, 75(7), 1086-1109. [CrossRef] [Google Scholar]
  3. Eglin, D. and M. Alini, Degradable polymeric materials for osteosynthesis: Tutorial. European Cells and Materials, 2008. 16: p. 80-91. [CrossRef] [Google Scholar]
  4. Rauso, R., et al., Plates removal in orthognathic surgery and facial fractures: when and why. J Craniofac Surg, 2011. 22(1): p. 252-4. [CrossRef] [Google Scholar]
  5. Nuss, K. M., & von Rechenberg, B. (2008). Biocompatibility issues with modern implants in bone-a review for clinical orthopedics. The open orthopaedics journal, 2, 66. [CrossRef] [Google Scholar]
  6. Catledge, S.A., V. Thomas, and Y.K. Vohra, Nanostructured diamond coatings for orthopaedic applications. Woodhead Publ Ser Biomater, 2013. 2013: p. 105-150. [Google Scholar]
  7. P Pawar, R., U Tekale, S., U Shisodia, S., T Totre, J., & J Domb, A. (2014). Biomedical applications of poly (lactic acid). Recent Patents on Regenerative Medicine, 4(1), 40-51. [CrossRef] [Google Scholar]
  8. Girdthep, S., et al., Formulation and characterization of compatibilized poly(lactic acid)-based blends and their nanocomposites with silver-loaded kaolinite. Polymer International, 2015. 64(2): p. 203-211. [CrossRef] [Google Scholar]
  9. Girdthep, S., et al., Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: A route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer, 2014. 55(26): p. 6776-6788. [CrossRef] [Google Scholar]
  10. Russias, J., et al., Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Mater Sci Eng C Biomim Supramol Syst, 2006. 26(8): p. 1289-1295. [CrossRef] [Google Scholar]
  11. Ochi, S., Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials, 2008. 40(4-5): p. 446-452. [CrossRef] [Google Scholar]
  12. Kandar, M.I.M. and H.M. Akil, Application of Design of Experiment (DoE) for Parameters Optimization in Compression Moulding for Flax Reinforced Biocomposites. Procedia Chemistry, 2016. 19: p. 433-440. [CrossRef] [Google Scholar]
  13. Kharazi, A.Z., M.H. Fathi, and F. Bahmany, Design of a textile composite bone plate using 3D-finite element method. Materials & Design, 2010. 31(3): p. 1468-1474. [CrossRef] [Google Scholar]
  14. Hartmann, M. H. (1998). High molecular weight polylactic acid polymers. In Biopolymers from renewable resources (pp. 367-411). Springer, Berlin, Heidelberg. [CrossRef] [Google Scholar]
  15. Chen, Q., Zhu, C., & Thouas, G. A.)2012(. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 1)1(, 2. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.