Open Access
Issue
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
Article Number 11002
Number of page(s) 7
Section Rolling/Rollforming
DOI https://doi.org/10.1051/matecconf/201819011002
Published online 18 September 2018
  1. W. Homberg, T. Rostek, E. Wiens, Internal Flow-turning – an Innovative Technology for the Manufacture of Tailored Tubes, Key Engineering Materials Vol. 639 (2015) pp 65-70 [Google Scholar]
  2. W. Homberg, E. Wiens, Internal Flow-Turning – a new approach for the manufacture of tailored tubes with a constant external diameter, Procedia Engineering of the 12th ICTP, Vol. 207 (2017) pp 1755-1760 [CrossRef] [Google Scholar]
  3. W. Homberg, E. Wiens, Internal Flow-Turning – efficient manufacture of load-adapted tubes with a constant external diameter, conference proceedings of 5th International Conference on Steels in Cars and Trucks, Amsterdam, The Netherlands (2017) [Google Scholar]
  4. M. Sivanandini, S.S. Dhami, B.S. Pabla, Flow Forming Of Tubes – A Review, International Journal of Scientific & Engineering Resurch, Vol. 3, Issue 5 (2012) [Google Scholar]
  5. C.C. Wong, T.A. Dean, J. Lin, A review of spinning, shear forming and flow forming processes, Int. Journal of Machine Tools & Manufacture 43 (2003) pp 1419-1435 [Google Scholar]
  6. C. Dahmen, Fertigungstechnologie und Bauteilverhalten drückgewalzter Innenverzahnungen, PhD Thesis, WZL RWTH Aachen, Shaker Verlag (2005) [Google Scholar]
  7. P. Groche, D. Fritsche, Application and modelling of flow forming manufacturing process for internally geared wheels, Int. Journal of Machine Tools & Manufacture 46 (2006) pp 1261-1265 [CrossRef] [Google Scholar]
  8. U. Wirtz, DuoBond® is ready for production – New composite material provides stable drives, Compact, pp 28-29, 1 (2013) [Google Scholar]
  9. C. Brinkmann, Drückwalzen Innovativer Werkstoff für ein effizientes Verfahren, Ingenieur forum, pp 8-10, 1 (2013) [Google Scholar]
  10. K.I.E. Ahmed, A new ball set for tube spinning oft hin-walled tubular part with longitudinal inner ribs, Journal of Engineering Sciences, Vol. 39 pp 15-32, (2011) [Google Scholar]
  11. K. H. Heidel, S. Kühmel, Verfahrensoptimierung des Abstreckdrückens mit Kugeln für tiefgezogene Näpfe, PhD Thesis, Karl-Marx-Stadt, (1979) [Google Scholar]
  12. D. Zhao, J. Deng, H. Mao, D. Qian, H. Ou, FE simulation and experiment study on flow forming of inner-splined flange, Procedia Engineering of the 12th ICTP, Vol. 207 (2017) pp 621-626 [CrossRef] [Google Scholar]
  13. S. Jiang, Y. Zheng, Z. Ren, C. Li, Multi-pass spinning oft hin-walled tubular part with longitudinal inner ribs, Trans Nonferous Met. Soc. China 19 (2009) pp 215-221 [CrossRef] [Google Scholar]
  14. S. Jiang, Z. Ren, C. Li, K. Xue, Role of ball size in backward ball spinning of thin-walled tubular part with longitudinal inner ribs, Journal of Materials Processing Technology, Vo. 209 (2009) pp 2167-2174 [CrossRef] [Google Scholar]
  15. E. Wiens, Herstellung innovativer Stahlhalbzeuge mit wanddicke-und festigkeitsveränderlichen Eigenschaften für den Leichtbau durch Innendrückwalzen; final report oft he resurch project P948/IGF 17753 N; 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.