Open Access
Issue
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
Article Number 04004
Number of page(s) 8
Section Cold forming
DOI https://doi.org/10.1051/matecconf/201819004004
Published online 18 September 2018
  1. J. M. Atienza, J. Ruiz-Hervias, M. L. Martinez-Perez, F. J. Mompean, M. Garcia-Hernandez, M. Elices: Residual stresses in cold drawn pearlitic rods. Sript. Mat., 52, no. 12, pp. 1223–1228 (2005) [CrossRef] [Google Scholar]
  2. S. He, A. Van Bael, S. Y. Li, P. Van Houtte, F. Mei, A. Sarban: Residual stress determination in cold drawn steel wire by FEM simulation and X-ray diffraction. Mat. Sci. and Eng., 346, no. 1–2, pp. 101–107 (2003) [CrossRef] [Google Scholar]
  3. V. Hauck: Structural and Residual Stress Analysis by Nondestructive Methods, pp. 235 (1997), no. 1–2, pp. 101–107 (2003) [Google Scholar]
  4. B. Scholtes: Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen: Ursachen, Ermittlung und Bewertung. DGM Informationsgesellschaft (1991) [Google Scholar]
  5. J. Llorca, V. Sánchez-Gálvez: Fatique limit and fatique life prediction in high strength cold drawn eutetoid steel wires. Fatique Fract. Eng. Mater. Struct, 12, no. 1, pp. 31–45 (1989) [CrossRef] [Google Scholar]
  6. A. E. Tekkaya: Ermittlung von Eigenspannungen in der Kaltmassivumformung. Berichte aus der Umformtechnik der Universität Stuttgart (1986) [CrossRef] [Google Scholar]
  7. D. J. Celentano, M. Palacios, E. L. Rojas, M. A. Cruchaga, A. A. Artigas, A. E. Monsalve: Simulation and experimental validation of multiple-step wire drawing processes. Finite Elem. Anal. Des., 45, no. 3, pp. 163–180 (2009) [CrossRef] [Google Scholar]
  8. H. Överstam: The influence of bearing geometry on the residual stress state in cold drawn wire, analysed by the FEM. Journal of Materials Processing Technology, 171, no. 3, pp. 446–450 (2006) [CrossRef] [Google Scholar]
  9. J. M. Atienza, M. Elices: Influence of residual stresses in the tensile test of cold drawn wires. Mat. and Struc., 36, no. 262, pp. 548–552 (2003) [CrossRef] [Google Scholar]
  10. Ch. Siva Naga Teja, N. Guru Murty, P. Satish Reddy: FE Analysis of Wire Drawing Process with different die contours. Int. journal of scie. eng. and adv. tech., 4, no. 2, pp. 134–143 (2016) [Google Scholar]
  11. R. Neugebauer, A. Sterzing, R. Selbmann, R. Zachäus, M. Bergmann: Gradation extrusion Severe plastic deformation with defined gradient. Mat.-wiss. u. Werkst., 43, no. 7, pp 582–588 (2012) [CrossRef] [Google Scholar]
  12. M. Bergmann, A. Sterzing, D. Landgrebe: Influencing the gradient of material properties by gradation extrusion. Appl. Mech. and Mat., 794, pp. 166–173 (2015) [Google Scholar]
  13. R. Neugebauer, M. Bergmann: Local Severe Plastic Deformation by Modified Impact Extrusion Process. Steel Research International - Special Edition: 14th International Conference on Metal Forming, pp. 471–474 (2012) [Google Scholar]
  14. M. Bergmann: Verfahren zur Herstellung gradiert hochgradig plastisch umgeformter Werkstoffe. Verlag wissenschaftlicher Scripten (2013) [Google Scholar]
  15. D. Landgrebe, A. Sterzing, N. Schubert, M. Bergmann: Influence of die geometry on performance in gradation extrusion using numerical simulation and analytical calculation. CIRP Annals-Man. Tech., 65, pp. 269–272 (2016) [CrossRef] [Google Scholar]
  16. M. Spittel, A. Spittel: Datasheet X5CrNi18–10 1.4301, Metal Forming Data of Ferrous Alloys deformation behaviour, 2C1, SpringerMat. (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.