Issue |
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
|
|
---|---|---|
Article Number | 12003 | |
Number of page(s) | 6 | |
Section | Sheet metal forming | |
DOI | https://doi.org/10.1051/matecconf/201819012003 | |
Published online | 18 September 2018 |
Improving the formability of magnesium by cushion-ram-pulsation
1
Professorship for Forming and Joining, Technische Universität Chemnitz, Germany
2
Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Germany
*
Corresponding author: anja.rautenstrauch@mb.tu-chemnitz.de
The application of forming processes using lightweight magnesium alloys is known to be difficult with regard to minor formability caused by a small number of active slip systems, especially at low temperatures. However, a new approach for deep drawing at elevated temperatures considers flexible motion profiles of a servo-screw press. The so-called cushion-ram-pulsation (CRP) is a newly developed method of position-controlled motion. As a result, the process limitations for deep drawing are significantly extended. This study investigates the deep drawing process of AZ31 cups by variable motion profiles of cushion and ram, focusing on enhanced drawability. Therefore the initial AZ31 sheet was fabricated by twin-roll casting. Furthermore, the adjustment of the forming temperature for an improved forming process and optimized component properties are described. In addition, the results were evaluated in comparison to conventional deep drawing, and the superior technological potential will be outlined.
Key words: Deep drawing / Magnesium / Sheet metal
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.