Open Access
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
Article Number 03017
Number of page(s) 9
Section Cloud & Network
Published online 10 August 2018
  1. He, Suining, and S-H. Gary Chan. “WiFi fingerprint-based indoor positioning: Recent advances and comparisons.”IEEE Communications Surveys & Tutorials 18(1) 466-490 (2016) [CrossRef] [Google Scholar]
  2. Davidson, Pavel and Robert, Piche. “A Survey of Selected Indoor Positioning Methods for Smartphones.”IEEE Communications Surveys & Tutorials(2016). [Google Scholar]
  3. Xie, Yaqin, et al. “An improved K-nearest-neighbor indoor localization method based on spearman distance.”IEEE Signal Processing Letters 23(3) 351-355(2016). [CrossRef] [Google Scholar]
  4. Xiao, Jiang, et al. “FIFS: Fine-grained indoor fingerprinting system.” 21st International Conference on Computer Communications and Networks (ICCCN) (2012). [Google Scholar]
  5. Ni, L M., Liu, Y., Lau, Y C., et al. LANDMARK: indoor location sensing using active RFID, Wireless Networks. 10 (6) 701-710(2014). [Google Scholar]
  6. Mucchi, L., Marcocci, P.. A new parameter for UWB indoor channel profile identification, IEEE Transactions on Wireless Communications. 8(4) 1597-1602(2009). [CrossRef] [Google Scholar]
  7. Y. –S.Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose: Indoor positioning with smart phones and visible light,” in Proc, ACM MobiCom, pp. 447-458.(2014). [Google Scholar]
  8. Wen, Y., Tian, X., Wang, X., et al. Fundamental limits of RSS fingerprinting based indoor localization. International conference on computer communications. Pp.2479-2487 (2015). [Google Scholar]
  9. Zhou, Rui, et al. “An Optimized Space Partitioning Technique to Support Two-Layer WiFi Fingerprinting.”Wireless Communications and Networking Conference (WCNC) (2017). [Google Scholar]
  10. S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-free crowdsourced indoor localization,” in Proc, IEEEINFOCOM, pp. 2481-2489 (2013). [Google Scholar]
  11. C. Wu, Z. Yang, Y.Liu, and W. Xi, “WILL: Wireless indoor localization without site survey,” IEEE Trans, Paralell Distrib. Syst. 24(4), 839-848 (2013). [CrossRef] [Google Scholar]
  12. Kanaris, L.; Kokkinis, A.; Raspopoulos, M.; Liotta, A.; Stavrou, S. Improving RSS fingerprint-based localization using directional antennas. In Proceedings of the The 8th European Conference on Antennas and Propagation (EuCAP), The Hague, The Netherlands, pp. 1593–1597 (2014). [Google Scholar]
  13. Kokkinis, A.; Raspopoulos, M.; Kanaris, L.; Liotta, A.; Stavrou, S. Map-aided fingerprint-based indoor positioning. In Proceedings of the 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, pp. 270–274(2013). [CrossRef] [Google Scholar]
  14. Yeung, W.; Zhou, J.; Ng, J. Enhanced Fingerprint-Based Location Estimation System in Wireless LAN Environment. In Proceedings of the International Conference on Embedded and Ubiquitous Computing, pp. 273–284.(2007) [Google Scholar]
  15. Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R.. Autoencoder for words. Neurocomputing 139, 84-96 (2014). [CrossRef] [Google Scholar]
  16. Mourao H A S, Oliveira H A B F D, Luiz D F. WiFi indoor positioning system using transmit power variation and kNN, IEEE, Conference on Local Computer Networks. pp.1-4.(2013). [Google Scholar]
  17. Johan Chateau, Pierre Rousseau, Gregory Albiston, Beverley Cook, Stylianos Papanastasiou, Evtim Peytchev, “Implementation and evaluation of particle filtering for indoor positioning”, IEEE Symposium on Computers and Communication (ISCC), pp. 1-6.(2014). [Google Scholar]
  18. Samer Fayssal, “Reducing ambiguity in indoor tracking using point of interest”, IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA) .pp. 117-123 (2014). [Google Scholar]
  19. Leonard, James A., and Mark A. Kramer. “Radial basis function networks for classifying process faults.”IEEE Control Systems 11(3),31-38 (1991). [Google Scholar]
  20. Youssef, M and Agrawala, A, “The Horus WLAN location determination system,” inProc. ACM MobiSys’05, Seattle, Wa, pp. 205-218 (2005). [Google Scholar]
  21. Zhang, Wei, et al. “Deep neural networks for wireless localization in indoor and outdoor environments.” Neurocomputing 194, 279-287 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.