Open Access
MATEC Web Conf.
Volume 182, 2018
17th International Conference Diagnostics of Machines and Vehicles
Article Number 01029
Number of page(s) 10
Section Diagnostics of Machines and Vehicles
Published online 30 July 2018
  1. J. K. Sinha, M. I. Friswell, S. Edwards, Simplified models for the location of cracks in beam structures using measured vibration data. Journal of Sound and Vibration 251(1), p. 13-38. (2002). DOI: 10.1006/jsvi.2001.3978 [CrossRef] [Google Scholar]
  2. Matej Biček, Gorazd Gotovac, Damijan Miljavec, Samo Zupan. Mechanical failure mode causes of in-wheel motors. Strojniški vestnik - Journal of Mechanical Engineering, Vol. 61, p. 74-85. (2015). DOI:10.5545/sv-jme.2014.2022 [CrossRef] [Google Scholar]
  3. K. He and W.D. Zhu, Structural damage detection using changes in natural frequencies: theory and applications. Journal of Physics: Conference Series, Vol. 305, Issue 1, p. 012054. (2011) [CrossRef] [Google Scholar]
  4. N. M. M. Maia, J. M. M. Silva, E. A. M. Almas, Damage detection in structures; from mode shape of frequency response function methods. Mechanical Systems and Signal Processing, Vol. 17, Issue 3, p. 489–498. (2003) [CrossRef] [Google Scholar]
  5. J. Cattarius, D. J. Inman, Time domain analysis for damage detection in smart structures, Mechanical Systems and Signal Processing, Vol. 11, Issue 3, p. 409–423. (1997) [CrossRef] [Google Scholar]
  6. T. Kuroiwa, H. Iemura, Vibration based damage detection using time series analysis, The 14th world conference on earthquake engineering, Beijing, China, October 12-17. (2008) [Google Scholar]
  7. A. Rychlik. Detection of structural damage in vibroacoustic analysis. Journal of KONES Powertrain and Transport, Vol. 23, No. 1, p. 279-288. (2016). [CrossRef] [Google Scholar]
  8. A. Rychlik, A method for evaluating the technical condition of wheel rims in slow moving vehicles based on modal parameters. DIAGNOSTYKA, Vol. 17, No. 2, p: 65-70, (2016) [Google Scholar]
  9. N. Guo, Z. Yan, Y. Jia, L. Wang. Model updating using correlation analysis of strain frequency response function, Mechanical Systems and Signal Processing, Vols. 70-71, p. 284–299. (2016) [CrossRef] [Google Scholar]
  10. Z. D. Zheng, Z. R. Lu, W. H. Chen, J. K. Liu., (2014). Structural damage identification based on power spectral density sensitivity analysis of dynamic responses, Computers & Structures, Vol. 146, p. 176–184. DOI: 10.1016/j.compstruc.2014.10.011 [Google Scholar]
  11. D. Zhu, Yi X., Y. Wang. Sensitivity analysis of transmissibility functions for structural damage detection, Proceedings of SPIE 7983, (2011) 79832M-1, DOI: 10.1117/12.879867 [Google Scholar]
  12. D. D. Rizos, S. D. Fassois, Z. P. Marioli-Riga, A. N. Karanika, Vibration-based skin damage statistical detection and restoration assessment in a stiffened aircraft panel. Mechanical Systems and Signal Processing, Vol. 22, Issue 2, p. 315-337. (2008) [CrossRef] [Google Scholar]
  13. M. Zhang, R. Schmidt, Sensitivity analysis of an auto-correlation-function-based damage index and its application in structural damage detection. Journal of Sound and Vibration, Vol. 333, Issue 26, p. 7352-7363. (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.