Open Access
MATEC Web of Conferences
Volume 180, 2018
13th International Conference Modern Electrified Transport – MET’2017
Article Number 02008
Number of page(s) 5
Section Energy Effectiveness of Transport
Published online 27 July 2018
  1. A. Szelag, Wpływ napięcia w sieci trakcyjnej 3kV DC na parametry energetyczno-trakcyjne zasilanych pojazdów (Instytut Naukowo-Wydawniczy SPATIUM, 2013) [In Polish] [Google Scholar]
  2. X. Luo, J. Wang, M. Dooner, and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, 137, 511-536 (2015) [Google Scholar]
  3. R. Hemmati and H. Saboori, Emergence of hybrid energy storage systems in renewable energy and transport applications - A review, Renew. Sustain. Energy Rev., 65, 11-23 (2016) [CrossRef] [Google Scholar]
  4. M. Wieczorek and M. Lewandowski, A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm, Appl. Energy, 192, 222-233 (2017) [CrossRef] [Google Scholar]
  5. A. Castaings, W. Lhomme, R. Trigui, and A. Bouscayrol, Comparison of energy management strategies of a battery/supercapacitors system for electric vehicle under real-time constraints, Appl. Energy, 163, 190-200 (2016) [CrossRef] [Google Scholar]
  6. V. I. Herrera, A. Milo, H. Gaztañaga, and H. Camblong, Multi-objective Optimization of Energy Management and Sizing for a Hybrid Bus with dual Energy Storage System, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC) (2016). [Google Scholar]
  7. Z. Song, H. Hofmann, J. Li, X. Han, and M. Ouyang, Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach, Appl. Energy, 139, 151-162 (2015) [CrossRef] [Google Scholar]
  8. Z. Song, J. Li, X. Han, L. Xu, L. Lu, M. Ouyang, and H. Hofmann, Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles, Appl. Energy, 135, 212-224 (2014) [Google Scholar]
  9. V. Herrera, A. Milo, H. Gaztañaga, I. Etxeberria-Otadui, I. Villarreal, and H. Camblong, Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway, Appl. Energy, 169, 831-845 (2016) [Google Scholar]
  10. D. Zhu, S. Yue, S. Park, Y. Wang, N. Chang, and M. Pedram, Cost-effective design of a hybrid electrical energy storage system for electric vehicles, Proc. 2014 Int. Conf. Hardware/Software Codesign Syst. Synth. -CODES ’14, 1-8 (2014) [Google Scholar]
  11. R. Sadoun, N. Rizoug, P. Bartholomeus, and P. Le Moigne, Optimal sizing of hybrid supply for electric vehicle using Li-ion battery and supercapacitor, Int. Rev. Electr. Eng., 9(2), 332-340 (2014) [Google Scholar]
  12. The Boston Consulting Group, Focus Batteries for Electric Cars, Outlook, 1, 1-18 (2010) [Google Scholar]
  13. P. Miller, Automotive Lithium-ion Batteries, Johnson Matthey Technol. Rev., 59(1), 4-13 (2015) [CrossRef] [Google Scholar]
  14. N. Omar, M. Abdel, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy, H. Gaulous, G. Mulder, P. Van Den Bossche, and T. Coosemans, Lithium iron phosphate based battery - Assessment of the aging parameters and development of cycle life model, Appl. Energy, 113, 1575-1585 (2014) [CrossRef] [Google Scholar]
  15. M. A. Danzer, V. Liebau, and F. Maglia, Aging of lithium-ion batteries for electric vehicles (Elsevier Ltd., 2015) [Google Scholar]
  16. K. Jalkanen, J. Karppinen, L. Skogström, T. Laurila, M. Nisula, and K. Vuorilehto, Cycle aging of commercial NMC/graphite pouch cells at different temperatures, Appl. Energy, 154, 160-172 (2015) [CrossRef] [Google Scholar]
  17. N. Omar, Y. Firouz, H. Gualous, J. Salminen, T. Kallio, J. M. Timmermans, T. Coosemans, P. Van den Bossche, and J. Van Mierlo, 9 - Aging and degradation of lithium-ion batteries (Elsevier Ltd., 2015) [Google Scholar]
  18. M. Lewandowski, M. Orzyłowski, Fractionalorder models: The case study of the supercapacitor capacitance measurement, Bull. Polish Acad. Sci. -Technical Sci., 65(4), 449-457 (2017) [Google Scholar]
  19. D. Anseán, M. González, M. Ieee, J. C. Viera, M. Ieee, J. C. Antón, and C. Blanco, Evaluation of LiFePO 4 batteries for Electric Vehicle applications, IEEE Trans. Ind. Appl., 51(2), 1855-1863 (2015) [CrossRef] [Google Scholar]
  20. H. Gualous, R. Gallay, M. Al Sakka, A. Oukaour, B. Tala-Ighil, and B. Boudart, Calendar and cycling ageing of activated carbon supercapacitor for automotive application, Microelectron. Reliab., 52(9-10), 2477-2481 (2012) [CrossRef] [Google Scholar]
  21. P. Kreczanik, P. Venet, A. Hijazi, and G. Clerc, Study of supercapacitor aging and lifetime estimation according to voltage, temperature, and RMS current, IEEE Trans. Ind. Electron., 61(9), 4895-4902 (2014) [CrossRef] [Google Scholar]
  22. D. Yan, L. Lu, Z. Li, X. Feng, M. Ouyang, and F. Jiang, Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis, Appl. Energy, 179, 1123-1130 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.