Open Access
Issue
MATEC Web Conf.
Volume 179, 2018
2018 2nd International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2018)
Article Number 01018
Number of page(s) 7
Section Mechanical
DOI https://doi.org/10.1051/matecconf/201817901018
Published online 26 July 2018
  1. P. Flores, J.C.P. Claro, A systematic and general approach to kinematic position errors due to manufacturing and assemble tolerances. Proceedings of ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV, 4-7 Sep. (2007). [Google Scholar]
  2. E. Askari, P. Flores, D. Dabirrahmani, R. Appleyard, Dynamic modeling and analysis of wear in spatial hard-on-hard couple hip replacements using multibody systems methodologies. Nonlinear Dynamics, 82 (1-2), 1039--1058 (2015). [CrossRef] [Google Scholar]
  3. S. Bing, J. Ye, Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mechanism and Machine Theory, 43(12), 1625--1638 (2008). [CrossRef] [Google Scholar]
  4. H. Funabashi, K. Ogawa, M. Horie, A dynamic analysis of mechanisms with clearances. Bulletin of the JSME, 21(161), 1652--1659 (1978). [CrossRef] [Google Scholar]
  5. P. Flores, J. Ambrósio, Revolute joints with clearance in multibody systems. Computers & structures, 82(17), 1359--1369 (2004). [CrossRef] [Google Scholar]
  6. P. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 220(4), 257--271 (2006). [CrossRef] [Google Scholar]
  7. Q. Tian, Y. Sun, C. Liu, H. Hu, P. Flores, ElastoHydroDynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Computers and Structures, 114, 106--201 (2013). [Google Scholar]
  8. P. Flores, R. Leine, C. Glocker, Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. Multibody System Dynamics, 23(2), 165--190 (2010). [CrossRef] [Google Scholar]
  9. S. Mukras, N.H. Kim, N.A. Mauntler, T.L. Schmitz, W.G. Sawyer, Analysis of planar multibody systems with revolute joint wear. J. Wear, 268(5-6), 643--652 (2010). [CrossRef] [Google Scholar]
  10. B.A.M. Abdallah, I. Khemili, N. Aifaoui, Numerical investigation of a flexible slider-crank mechanism with multijoints with clearance. Multibody System Dynamics, 38(2), 173--199 (2016). [CrossRef] [Google Scholar]
  11. F. Marques, F. Isaac, N. Dourado, P. Flores, An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mechanism and Machine Theory, 116, 123--144 (2017). [Google Scholar]
  12. N. Akhadkar, V. Acary, B. Brogliato, Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody System Dynamics, 81, 1--34 (2017). [Google Scholar]
  13. H. Tan, Y. Hu, L. Li, A continuous analysis method of planar rigid-body mechanical systems with two revolute clearance joints. Multibody System Dynamics, 40(4), 347--373 (2017). [CrossRef] [Google Scholar]
  14. G. Gilardi, I. Sharf, Literature survey of contact dynamics modelling. Mechanism and Machine Theory, 37(10), 1213--1239 (2002). [Google Scholar]
  15. C. Pereira, J. Ambrósio, A. Ramalho, Dynamics of chain drives using a generalized revolute clearance joint formulation. Mechanism and machine Theory, 92, 64--85 (2015). [CrossRef] [Google Scholar]
  16. P. Flores, J. Ambrósio, On the contact detection for contact-impact analysis in multibody systems. Multibody System Dynamics, 24 (1), 103--122 (2010). [CrossRef] [Google Scholar]
  17. F. Marques, P. Flores, H.M. Lankarani, On the frictional contacts in multibody system dynamics. Multibody Dynamics, Springer International Publishing (2016). [Google Scholar]
  18. K.H. Hunt, F.R.E. Crossley, Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics, 42(2), 440--450 (1975). [Google Scholar]
  19. F. Pfeiffer, C. Glocker, Multibody Dynamics with Unilateral Contacts. John Wiley & Sons, New York (1996). [CrossRef] [Google Scholar]
  20. J.C. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena. Computer Methods in Applied Mechanics and Engineering, 52(1-3), 527--634 (1985). [Google Scholar]
  21. J.E. Shigley, C.R. Mischke, Mechanical Engineering Design. McGraw-Hill Book Company, New York (1989). [Google Scholar]
  22. J. Alves, N. Peixinho, M.T. Silva, P. Flores, H. Lankarani, A comparative study on the viscoelastic constitutive laws for frictionless contact interfaces in multibody dynamics. Mechanism and Machine Theory, 85 (Supplement C), 172--188 (2015). [Google Scholar]
  23. Z. Qi, X. Luo, Z. Huang, Frictional contact analysis of spatial prismatic joints in multibody systems. Multibody System Dynamics, 26(4), 441--468 (2011). [CrossRef] [Google Scholar]
  24. O.A. Bauchau, C. Ju, Modeling Friction Phenomena in Flexible Multibody Dynamics. Computer Methods in Applied Mechanics and Engineering, 195(50-51), 6909--6924 (2011). [CrossRef] [Google Scholar]
  25. E. Pennestrí, V. Rossi, P. Salvini, P.P. Valentini, Review and comparison of dry friction force models. Nonlinear Dynamics, 83(4), 1785--1801 (2016). [CrossRef] [Google Scholar]
  26. J. Wang, Implementation of geometrically exact beam element for nonlinear dynamics modeling. Multibody System Dynamics, 35(4), 377--392 (2015). [CrossRef] [Google Scholar]
  27. J. Wang, Modified models for revolute joints coupling flexibility of links in multibody systems. Multibody System Dynamics, 1-19 (2018). [Google Scholar]
  28. J. Wang, Application of Radau IIA algorithms to flexible multibody system with holonomic constraints. Nonlinear Dynamics, 88(4), 2391-2401, (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.