Open Access
MATEC Web Conf.
Volume 178, 2018
22nd International Conference on Innovative Manufacturing Engineering and Energy - IManE&E 2018
Article Number 07002
Number of page(s) 6
Section Innovation, Creativity, Learning and Education in Engineering
Published online 24 July 2018
  1. R.E. Barlow, F. Proschan. Mathematical Theory of Reliability (J.Wiley & Sons, New York 1995) [Google Scholar]
  2. L. Będkowski, T. Dąbrowski. The Basis of Exploitation, Part II: The Basis of Exploational Reliability (Military University of Technology, Poland, 2006) [Google Scholar]
  3. A. Birolini, Reliability Engineering Theory and Practice (Springer, New York, 1999) [CrossRef] [Google Scholar]
  4. B. Buchannan, E. Shortliffe. Rule - Based expert systems (Addison - Wesley Publishing Company, 1985) [Google Scholar]
  5. S. Duer, Diagnostic system for the diagnosis of a reparable technical object, with the use of an artificial neural network of RBF type. Neural Computing & Applications 19(5), 691-700 (2010) [CrossRef] [Google Scholar]
  6. S. Duer, R. Duer. Diagnostic system with an artificial neural network which determines a diagnostic information for the servicing of a reparable technical object. Neural Computing & Applications 19(5), 755-766 (2010) [CrossRef] [Google Scholar]
  7. S. Duer Artificial neural network in the control process of object's states basis for organization of a servicing system of a technical objects. Neural Computing & Applications, 21(1), 153-160 (2012) [CrossRef] [Google Scholar]
  8. S. Duer, K. Zajkowski. Taking decisions in the expert intelligent system to support maintenance of a technical object on the basis information from an artificial neural network. Neural Computing & Applications 23(7), 2185-2197 (2013) [CrossRef] [Google Scholar]
  9. S. Duer, K. Zajkowski, R. Duer, J. Paś. Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network. Neural Computing & Applications, 23(3-4), 913-925 (2013) [CrossRef] [Google Scholar]
  10. S. Duer, Applications of an artificial intelligence for servicing of a technical object. Neural Computing & Applications 22(5), 955-968 (2013) [CrossRef] [Google Scholar]
  11. S. Duer, D. Bernatowicz. The computer diagnostic program (DIAG 2) for identifying states of complex technical objects. E3S Web of Conferences, 19, 01029 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  12. M. Madan, M. Gupta, J. Liang, N. Homma, Static and Dynamic Neural Networks, From Fundamentals to Advanced Theory (John Wiley & Sons, Inc, Hoboken, New Jersey, 2003) [Google Scholar]
  13. T. Nakagawa. Maintenance Theory of Reliability (Springer - Verlag London Limited, 2005) [Google Scholar]
  14. T. Nakagawa, K. Ito. Optimal inspection policies for a storage system with degradation at periodic tests. Math. Comput. Model 31, 191-195 (2000) [CrossRef] [Google Scholar]
  15. K. Zajkowski. The method of solution of equations with coefficients that contain measurement errors, using artificial neural network. Neural Computing and Applications 24(2), 431-439 (2014) [CrossRef] [Google Scholar]
  16. K. Zajkowski. An innovative hybrid insulation switch to enable/disable electrical loads without overvoltages. E3S Web of Conferences 19, 01033 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  17. K. Zajkowski. Settlement of reactive power compensation in the light of white certificates. E3S Web of Conferences 19, 01037 (2017) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.