Open Access
Issue
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 16005
Number of page(s) 7
Section Multi-Axial, Variable and Complex Loadings
DOI https://doi.org/10.1051/matecconf/201816516005
Published online 25 May 2018
  1. Chopra O.K. and Shack W.J. (2007), NUREG/CR-6909, Rev. 0, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,”. [Google Scholar]
  2. RCC-M (2007) – Design and Construction Rules for mechanical components of nuclear PWR islands – 2007 edition with addenda in 2008, 2009 and 2010. [Google Scholar]
  3. EN-13445-3 V1 standard (2014), “Unfired pressure vessels – Part 3: Design,”. [Google Scholar]
  4. RCC-MRx (2012) « Règles de Conception et de Construction des Matériels Mécaniques des Installations Nucléaires applicables aux structures à haute température et à l'enceinte à vide ITER », AFCEN Code, Association Française pour les Règles de Conception et de Construction des chaudières Électronucléaires. www.afcen.com. [Google Scholar]
  5. Fissolo A. et al. (2009), "Crack Initiation under thermal fatigue: an overview of CEA experience, Part 1: thermal fatigue appears to be more damaging than uniaxial isothermal fatigue", Int. Journal of Fatigue, vol.31(3), p.587-600. [CrossRef] [Google Scholar]
  6. Lefebvre D.F. (1989), “Hydrostatic Pressure effect on Life Prediction in Biaxial Low-cycle fatigue”, Biaxial and Multiaxial Fatigue, EGF 3. [Google Scholar]
  7. Itoh T., Sakane M. and al. (2006)," A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading", Int. Journal of Fatigue, 28. [CrossRef] [Google Scholar]
  8. Parsons, M. W. Et Pascoe, K. J. (1975), "Development of a biaxial fatigue testing rig", Journal of Strain Analysis, 10, N° 1, p1-3. [CrossRef] [Google Scholar]
  9. Shimada H., Shimizu K., Obata M., Chikugo K. & Chiba, M. (1976), "A new biaxiaI testing machine for the flat specimen and a fundamental study on the shape of the specimen", Technology Reports, Tohoku Univ., 42. N° 2, p351-369. [Google Scholar]
  10. Poncelet M. et al. (2010), "Biaxial High Cycle Fatigue of a type 304L stainless steel: Cyclic strains and crack initiation detection by digital image correlation", European Journal of Mechanics A/Solids. [Google Scholar]
  11. Bradai S. et al. (2013), PVP2013-97200, “Crack Initiation under Equibiaxial Fatigue, Development of a particular Equibiaxial Fatigue Device.” [Google Scholar]
  12. De Baglion L. (2006), « Comportement et endommagement en fatigue oligocyclique d’un acier inoxydable austénitique 304L en fonction de l’environnement (vide, air, eau primaire REP) à 300°C », Thèse de l’Ecole Nationale Supérieure de Mécanique et d’Aérotechnique. [Google Scholar]
  13. Bradaï S., Gourdin C. and Gardin C. (2014), “Study of crack propagation under fatigue equibiaxial loading”, PVP2014-28417, ASME PVP. [Google Scholar]
  14. Bradaï S., Gourdin C. and al. (2015), “Equi-Biaxial Loading Effect on Austenitic Stainless Steel Fatigue Life”, PVP2015-45293, ASME PVP. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.