Open Access
MATEC Web Conf.
Volume 165, 2018
12th International Fatigue Congress (FATIGUE 2018)
Article Number 02006
Number of page(s) 9
Section Additive Manufacturing
Published online 25 May 2018
  1. A. Yadollahi, N. Shamsaei, S. M. Thompson, A. Elwany, L. Bian: Int J Fatigue, Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. 94: p. 218-235, (2017). [Google Scholar]
  2. T. M. Mower, M. J. Long: Mater Sci Eng A, Mechanical behavior of additive manufactured, powder-bed laser-fused materials. 651: p. 198- 213, (2016). [Google Scholar]
  3. H. S. Kramer, P. Starke, M. Klein, D. Eifler: Int. J. Fatigue, Cyclic hardness test PHYBALCHT – Short-time procedure to evaluate fatigue properties of metallic materials. 63: p. 78-84, (2014). [CrossRef] [Google Scholar]
  4. S.R. Daniewicz, N. Shamsaei: Int J Fatigue, An introduction to the fatigue and fracture behavior of additive manufactured parts. 94: p. 167, (2017). [CrossRef] [Google Scholar]
  5. J. J. Lewandowski, M. Seifi: Annu Rev Mater Res, Metal Additive Manufacturing: A Review of Mechanical Properties. 46: p. 151-186, (2016). [Google Scholar]
  6. R. Casati, J. Lemke, M. Vedani: J Mater Sci Technol: Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting. 32: p. 738-744, (2016). [Google Scholar]
  7. T. Bauer, K. Dawson, A.B. Spierings, K. Wegener: 26th Annual International Solid Freeform Fabrication (SFF) Symposium: Microstructure and mechanical characterisation of SLM processed Haynes® 230®. (2015) [Google Scholar]
  8. N. Shamsaeia, A. Yadollahi, L. Bian, S. M. Thompson: ADDMA, An overview of Direct Laser Deposition for additive manufacturing;Part II: Mechanical behavior, process parameter optimization andcontrol. 8: p. 12-35, (2015). [Google Scholar]
  9. E. Brandl, C.Leyens, F. Palm: IOP Conf. Series: Materials Science and Engineering 26, Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes., 26, (2011). [Google Scholar]
  10. B. Blinn, M. Klein, C. Gläßner, M. Smaga, J. C. Aurich, T. Beck: Metals, Investigation of microstructure and fatigue behavior of additively manufactured AISI 316L stainless steel with regard to the influence of a heat treatment. (2018) (accepted). [Google Scholar]
  11. C. Gläßner, B. Blinn, M. Burkhart, M. Klein, T. Beck, J. C. Aurich: WGP Jahreskongress, Comparison of 316L test specimens manufactured by Selective Laser Melting, Laser Deposition Welding and Continuous Casting. Aachen: Apprimus Verlag, (2017). [Google Scholar]
  12. T. Angel: J Iron Steel Inst, Formation of martensite in austenitic stainless steel - Effects of deformation, temperature and composition. 177: p. 165-174. (1954). [Google Scholar]
  13. G. Biallas, A. Piotrowski, D. Eifler: FFEMS, Cyclic stress-strain, stress-temperature and stress-electrical resistance response of NiCuMo allyed sintered steel. 18: p. 605-615, (1995). [Google Scholar]
  14. A. B. Spierings, G. Levy: SFF Symposium, Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. (2009). [Google Scholar]
  15. C. Kamath, B. El-dasher, G. F. Gallegos, W. E. King, A. Sisto: Int J Adv Manuf Technol, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. 74: p. 65-78. (2014). [CrossRef] [Google Scholar]
  16. P. Ganesh, R. Kaul, G. Sasikala, H. Kumar, S. Venugopal, P. Tiwari, S. Rai, R. C. Prasad, L. M. Kukreja: Metallogr Microstruct Anal, Fatigue Crack Propagation and Fracture Toughness of Laser Rapid Manufactured Structures of AISI 316L Stainless Steel. 3: p. 36- 45, (2014). [Google Scholar]
  17. O.H. Basquin: ASTM proceedings: The exponential law on endurance tests. 10: p. 625- 630, (1910). [Google Scholar]
  18. J. Morrow: ASTM Int, Cyclic plastic strain energy and fatigue of metals. STP 378: p. 45- 87, (1964). [Google Scholar]
  19. A. Grigorescu, P.-M. Hilgendorff, M. Zimmermann, C.-P. Fritzen, H.-J. Christ: Adv Mat Res, Effect of geometry and distribution of inclusions on the VHCF properties of a metastable austenitic stainless steel. 891-892: p. 440-445, (2014). [Google Scholar]
  20. A.C. Grigorescu, P.-M. Hilgendorff, M. Zimmermann, C.-P. Fritzen, H.-J. Christ: Int J Fatigue, Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part I – Experimental study. 93: p. 250-260, (2016). [Google Scholar]
  21. J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tröster, A. Weidner, H. Biermann, T. Niendorf: Int J Fatigue, Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. 94: p. 236-245, (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.