Open Access
Issue |
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/matecconf/201816401015 | |
Published online | 23 April 2018 |
- P.J. Werbos, The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. 1st Edition. John Wiley & Sons, Inc.: USA (1994). https://www.amazon.com/Roots-Backpropagation-Derivatives-Forecasting-Communications/dp/0471598976 [Google Scholar]
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Tech. rep., California Univ San Diego La Jolla Inst for Cognitive Science (1985) [Google Scholar]
- S. Dreyfus. Journal of Mathematical Analysis and Applications 5, 1:30-45 (1962). https://www.sciencedirect.com/science/article/pii/0022247X62900045 [CrossRef] [Google Scholar]
- K.S. Oh, K. Jung. Pattern Recognition 37, 6:1311-1314 (2004). https://www.sciencedirect.com/science/article/pii/S0031320304000524 [CrossRef] [Google Scholar]
- A.G. Ivakhnenko, V.G. Lapa, Tech. rep., Purdue Univ Lafayette Ind School Of Electrical Engineering (1966) [Google Scholar]
- D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber, Neural computation 22, 12:3207-3220 (2010). https://www.mitpressjournals.org/doi/full/10.1162/NECO_a_00052 [CrossRef] [Google Scholar]
- G.E. Hinton, S. Osindero, Y.W. Teh, Neural computation 18:1527-1554 (2006). http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf. [Google Scholar]
- A. Graves, A. Mohamed, G. Hinton. Speech recognition with deep recurrent neural networks. International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vancouver, Canada, 2013). ICASSP: 6645-6649 (2013. http://ieeexplore.ieee.org/document/6638947/ [Google Scholar]
- A. Krizhevsky, I. Sutskever, G.E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 (Lake Tahoe, Nevada, 2012). NIPS:1097-1105 (2012). https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks [Google Scholar]
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. Generative adversarial nets. Advances in Neural Information Processing Systems 27 (Montreal, Canada, 2014). NIPS:2672-2680 (2014). https://papers.nips.cc/paper/5423-generative-adversarial-nets [Google Scholar]
- M. Hutter. Universal artificial intelligence: sequential decisions based on algorithmic probability. Springer: Berlin (2005). https://www.amazon.com/Universal-Artificial-Intelligence-Algorithmic-Probability/dp/3540221395 [CrossRef] [Google Scholar]
- A.H. Marblestone, G. Wayne, K.P. Kording, Front. Comput. Neurosci. 10, 94 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021692/ [CrossRef] [Google Scholar]
- J.L. Elman, Rethinking Innateness: A Connectionist Perspective on Development (MIT Press, 1998). https://mitpress.mit.edu/books/rethinking-innateness [Google Scholar]
- R.J. Douglas, K.A. Martin. Annu. Rev. Neurosci. 27, 419-451 (2004). http://www.allpsych.uni-giessen.de/rauisch/readings/Douglas&Martin_2004.pdf. [CrossRef] [Google Scholar]
- M. Anthony. Discrete mathematics of neural networks: selected topics. SIAM: USA (2001). https://books.google.co.id/books?id=qOy4yLBqhFcC&printsec=frontcover&dq=Discrete+Mathematics+of+Neural+Networks:+Selected+Topics&hl=en&sa=X&ved=0ahUKEwjtlfj3mp7ZAhVGQY8KHfK2BscQ6AEIKDAA#v=onepage&q=Discrete%20Mathematics%20of%20Neural%20Networks%3A%20Selected%20Topics&f=false [CrossRef] [Google Scholar]
- P. Auer, H. Burgsteiner, W. Maass. Neural Networks 21, 786-795 (2008). https://igi-web.tugraz.at/people/maass/psfiles/126.pdf. [CrossRef] [Google Scholar]
- B. Widrow, M.A. Lehr. Proceedings of the IEEE 78, 9:1415-1442 (1990). http://ieeexplore.ieee.org/document/58323/ [CrossRef] [Google Scholar]
- S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies [Online] from https://pdfs.semanticscholar.org/aed0/54834e2c696807cc8b227ac7a4197196e211.pdf. (2001). [Accessed on] [Google Scholar]
- J. Schmidhuber, Learning 4 (2008) [Google Scholar]
- G.E. Hinton. What kind of a graphical model is the brain?. The 19th Proceeding International Joint Conference on Artificial Intelligence (Edinburgh, Scotland, 2005). IJCAI'05:1765-1775. https://www.semanticscholar.org/paper/What-kind-of-graphical-model-is-the-brain-Hinton/a4a5bef06587350604c7a9857ca09d91bd95763e [Google Scholar]
- Y. LeCun, Y. Bengio, G. Hinton. Nature 521:436-444 (2015). Nature 521, 436 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- I. Boardman, D. Bullock. A neural network model of serial order recall from short-term memory. IJCNN-91-Seattle International Joint Conference on Neural Networks (Seattle, USA, 1991). IJCNN-91-Seattle International Joint Conference on Neural Networks, 2:879-884 (1991). http://ieeexplore.ieee.org/document/155450/ [CrossRef] [Google Scholar]
- S. Grossberg. Proc. Natl. Acad. Sci. U.S.A. 60, 3:758-765 (1968). https://www.ncbi.nlm.nih.gov/pubmed/5243922 [CrossRef] [Google Scholar]
- S. Grossberg. Neural Networks 37:1-47 (2013). https://www.sciencedirect.com/science/article/pii/S0893608012002584 [CrossRef] [Google Scholar]
- S. Hochreiter, J. Schmidhuber. Neural Computation 9, 8:1735-1780 (1997). https://dl.acm.org/citation.cfm?id=1246450 [CrossRef] [Google Scholar]
- J. Schmidhuber. J Neural Networks 61:85-117 (2015). https://arxiv.org/abs/1404.7828 [Google Scholar]
- K. Gre, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, CoRR abs/1503.04069 (2015) [Google Scholar]
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Proceedings of the IEEE 86, 11:2278-2324 (1998). http://ieeexplore.ieee.org/document/726791/ [CrossRef] [Google Scholar]
- P.Y. Simard, D. Steinkraus, J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis, Seventh International Conference on Document Analysis and Recognition (Edinburgh, UK, 2003). ICDAR 3:958-962 (2003). http://ieeexplore.ieee.org/document/1227801/?denied [Google Scholar]
- M. Matsugu, K. Mori, Y. Mitari, Y. Kaneda. Subject independent facial expression recognition with robust face detection using a convolutional neural network. International Joint Conference on Neural Networks, (Portland, Oregon 2003). Neural Networks 16:555-559(2003). https://pdfs.semanticscholar.org/6dd4/40eec6718f29a35b464345df2c77a4f0e085.pdf [CrossRef] [Google Scholar]
- The MathWorks, Convolutional neural network, [Online] from https://uk.mathworks.com/discovery/convolutional-neural-network.html. [Accessed September 30th 2017]. [Google Scholar]
- A. Fischer, C. Igel. Pattern Recognition 47,1:25-39(2014) https://www.sciencedirect.com/science/article/pii/S0031320313002495 [CrossRef] [Google Scholar]
- I. Sugiarto, J. Conradt. Discrete belief propagation network using population coding and factor graph for kinematic control of a mobile robot. IEEE International Conference on Computational Intelligence and Cybernetics (CYBERNETICSCOM), (Yogyakarta, Indonesia 2013). IEEE Xplore:136-140(2014). http://ieeexplore.ieee.org/document/6865797/ [CrossRef] [Google Scholar]
- C.Y. Liou, W.C. Cheng, J.W. Liou, D.R. Liou. Neurocomputing, 139:84-96 (2014) https://www.sciencedirect.com/science/article/pii/S0925231214003658?via%3Dihub [CrossRef] [Google Scholar]
- F. Movahedi, J.L. Coyle, E. Sejdic. IEEE Journal of Biomedical and Health Informatics, PP,99:1(2017) http://ieeexplore.ieee.org/document/7981315/ [CrossRef] [Google Scholar]
- M. Ranzato, F.J. Huang, Y.L. Boureau, Y. LeCun. Unsupervised learning of invariant feature hier-archies with applications to object recognition. IEEE Conference on Computer Vision and Pattern Recognition, (Minneapolis, USA 2007). IEEE Xplore:1-8(2007). http://ieeexplore.ieee.org/document/4270182/?part=1 [Google Scholar]
- Q.V. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, A.Y. Ng, Building high-level features using large scale unsupervised learning. Appearing in Proceeding of the 29th International Conference on Machine Learning (Scotland, UK 2012). https://arxiv.org/pdf/1112.6209.pdf [Google Scholar]
- I. Sutskever, G. Hinton. Learning multilevel dis-tributed representations for high-dimensional sequences. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, (San Juan, Puerto Rico 2007). PMLR 2:548-555, 2007. http://proceedings.mlr.press/v2/sutskever07a.html [Google Scholar]
- G.W. Taylor, G.E. Hinton, S.T. Roweis. Modeling human motion using binary latent variables. In Neural Information Processing Systems Conference on Advances in Neural Information Processing Systems, (Vancouver, Canada 2006). p.1345-1352(2006). https://papers.nips.cc/paper/3078-modeling-human-motion-using-binary-latent-variables.pdf [Google Scholar]
- A. Radford, L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In International Conference on Learning Representations, (San Juan, Puerto Rico 2016). https://arxiv.org/pdf/1511.06434.pdf [Google Scholar]
- E.L. Denton, S. Chintala, A. Szlam, R. Fergus. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. Advances in Neural Information Processing Systems 28 (Montreal, Canada, 2015). NIPS:1486-1494. https://dl.acm.org/citation.cfm?id=2969405 [Google Scholar]
- C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cun-ningham, A. Acosta, et al. [Online] from https://arxiv.org/abs/1609.04802 (2016). [Accessed on] [Google Scholar]
- W. Maass. Neural networks 10, 9:1659-1671 (1997). https://www.sciencedirect.com/science/article/pii/S0893608097000117 [Google Scholar]
- A.J. Bell, Philosophical Transactions of the Royal Society of London B: Biological Sciences 354, 2013 (1999) [CrossRef] [Google Scholar]
- C. Mead. Proceedings of the IEEE 78, 10:1629-1636 (1990). http://ieeexplore.ieee.org/document/58356/ [CrossRef] [Google Scholar]
- R.J. Douglas, M.A. Mahowald, K.A.C. Martin. Hybrid analog-digital architectures for neuromorphic systems. Proceeding IEEE Conference on Neural Networks (Orlando, USA, 1994). Proceeding IEEE Conference on Neural Networks 3:1848-1853. http://ieeexplore.ieee.org/abstract/document/374439/ [Google Scholar]
- E. Chicca, F. Stefanini, C. Bartolozzi, G. Indiveri. Proceedings of the IEEE 102, 9:1367-1388 (2014). http://ieeexplore.ieee.org/document/6809149/ [CrossRef] [Google Scholar]
- S.C. Liu, T. Delbruck, G. Indiveri, A. Whatley, R. Douglas. Event-based neuromorphic systems. John Wiley & Sons: India, (2015) [CrossRef] [Google Scholar]
- E.M. Izhikevich. IEEE Transactions on Neural Networks 15, 5:1063-1070 (2004). http://ieeexplore.ieee.org/document/1333071/ [CrossRef] [PubMed] [Google Scholar]
- B. Szigeti, P. Gleeson, M. Vella, S. Khayrulin, A. Palyanov, J. Hokanson, et al. Front Comput Neurosci 8, 137 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217485/ [CrossRef] [Google Scholar]
- E.M. Izhikevich, G.M. Edelman. PNAS 105, 9:3593-3598 (2008). http://www.pnas.org/content/105/9/3593 [Google Scholar]
- K. Amunts, C. Ebell, J. Muller, M. Telefont, A. Knoll, T. Lippert. Neuron 92, 3:574-581 (2016). https://www.ncbi.nlm.nih.gov/labs/articles/27809997/ [CrossRef] [Google Scholar]
- P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, et al., Science 345, 6197:668-673 (2014). http://science.sciencemag.org/content/345/6197/668 [CrossRef] [Google Scholar]
- B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M. Bussat, et al. Proceedings of the IEEE 102, 5:699-716 (2014). http://ieeexplore.ieee.org/document/6805187/ [CrossRef] [Google Scholar]
- J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, S. Millner. A wafer-scale neuromorphic hardware system for large-scale neural modelling. 2010 IEEE International Symposium on Circuits and Systems (Paris, France, 2010). ISCAS:1947-1950. http://ieeexplore.ieee.org/document/5536970/ [CrossRef] [Google Scholar]
- S.B. Furber, F. Galluppi, S. Temple, L.A. Plana. Proceedings of the IEEE 102, 5:652-665 (2014). http://ieeexplore.ieee.org/document/6750072/ [CrossRef] [Google Scholar]
- I. Sugiarto, G. Liu, S. Davidson, L.A. Plana, S.B. Furber. High performance computing on SpiNNaker neuromorphic platform: a case study for energy efficient image processing, 2016 IEEE 35th International Performance Computing and Communications Conference. IPCCC:1-8. http://ieeexplore.ieee.org/document/7820645/ [Google Scholar]
- X. Jin, M. Luján, L.A. Plana, A.D. Rast, S.R. Welbourne, S.B. Furber. Effcient parallel implemen-tation of multilayer backpropagation networks on SpiNNaker. Proceedings of the 7th ACM International Conference on Computing Frontiers (Bertinoro, Italy, 2010 Proceedings of the 7th ACM International Conference on Computing Frontiers:89-90. https://dl.acm.org/citation.cfm?id=1787297 [CrossRef] [Google Scholar]
- T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi, L. Plana, S. Furber. ConvNets experiments on SpiNNaker. 2015 IEEE International Symposium on Circuits and Systems (Lisbon, Portugal, 2015). ISCAS:2405-2408. http://ieeexplore.ieee.org/document/7169169/ [CrossRef] [Google Scholar]
- J.A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen, et al. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 11:2706-2719 (2013). http://ieeexplore.ieee.org/document/6497055/ [CrossRef] [Google Scholar]
- E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.C. Liu, S. Furber. Scalable energy-effcient, low-latency implementations of trained spiking deep belief networks on SpiNNaker. 2015 International Joint Conference on Neural Networks (Killarney, Ireland, 2015). IJCNN:1-8. http://ieeexplore.ieee.org/document/7280625/ [Google Scholar]
- P. O'Connor, D. Neil, S.C. Liu, T. Delbruck, M. Pfeiffer. Front Neurosci 7, 178 (2013). https://www.ncbi.nlm.nih.gov/pubmed/24115919 [CrossRef] [Google Scholar]
- F. Jug, J. Lengler, C. Krautz, A. Steger, Swiss Society for Neuroscience (2012) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.