Issue |
MATEC Web Conf.
Volume 164, 2018
The 3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/201816401030 | |
Published online | 23 April 2018 |
Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration
Department of Informatics and Computer Engineering, Electronic Engineering Polytechnic Institute of Surabaya, Jl. Raya ITS, Keputih, Sukolilo, Keputih, Sukolilo, Surabaya, Jawa Timur, 60111 Indonesia
* Corresponding author: midzulqornain@gmail.com
The internet of things technology (IoT) is growing very rapidly. IoT implementation has been conducted in several sectors. One of them is for aquaculture. For the traditional farmers, they face problems for monitoring water quality and the way to increase the quality of the water quickly and efficiently. This paper presents a real-time monitoring and controlling system for aquaculture based on If This Then That (IFTTT) model and cloud integration. This system was composed of smart sensor module which supports modularity, smart aeration system for controlling system, local network system, cloud computing system and client visualization data. In order to monitor the water condition, we collect the data from smart sensor module. Smart sensor module consists of sensor dissolved oxygen, potential of hydrogen, water temperature and water level. The components of smart aeration system are microcontroller NodeMCU v3, relay, power supply, and propeller that can produce oxygen. The system could set the IFTTT rules for the ideal water condition for the pond in any kinds of aquaculture based on its needs through the web and android application. The experimental result shows that use IFTTT model makes the aquaculture monitoring system more customizable, expandable and dynamic.
Key words: Cloud computing / IFTTT / IoT / Smart aerator / Smart aquaculture
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.