Open Access
Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 6 | |
Section | Environmental Engineering and Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/201816205006 | |
Published online | 07 May 2018 |
- Edgerton, S. A., Holdren, M. W., Smith, D. L., & Shah, J. J. (1989). Inter-urban comparison of ambient volatile organic compound concentration in U.S. cities. Journal of the Air Pollution Control Association (JAPCA), 39(5), 729-32. [Google Scholar]
- Sweet, C. W., & Vermette, S. J. (1992). Toxic volatile organic compounds in urban air in Illinois. Environmental Science & Technology, 26(1), 165-173. http://doi.org/10.1021/es00025a020 [CrossRef] [Google Scholar]
- Kostiainen, R. (1995). Volatile organic compounds in the indoor air of normal and sick houses. Atmospheric Environment, 29(6), 693-702. [CrossRef] [Google Scholar]
- Mukund, R., Kelly, T. J., & Spicer, C. W. (1996). Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmospheric Environment, 30(20), 3457-3470. Retrieved from 10.1016/1352-2310(95)00487-4 [CrossRef] [Google Scholar]
- Alberici, R. M., & Jardim, W. F. (1997). Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental, 14(1-2), 55-68. http://doi.org/http://dx.doi.org/10.1016/S0926-3373(97)00012-X. [CrossRef] [Google Scholar]
- Chun, H., Park, S., You, S., Kang, G., Bae, W., Kim, K., Park, J. E., Öztürk, A., Shin, D. (2009). Preparation of a transparent hydrophilic TiO 2 thin film photocatalyst. Journal of Ceramic Processing Research, 10(2), 219-223. [Google Scholar]
- Adawiya J. Haider, Zainab N. Jameel, Samar Y. Taha (2015). Synthesis and Characterization of TiO2 Nanoparticles via Sol-Gel Method by Pulse Laser Ablation. Eng. & Tech. Journal Vol.33 part (B). No.5, p. 761-771. [Google Scholar]
- Yu, J. (2003). Preparation and characterization of highly photoactive nanocrystalline TiO2 powders by solvent evaporation-induced crystallization method. Science in China Series B, 46(6), 549. http://doi.org/10.1360/03yb0012 [CrossRef] [Google Scholar]
- Fujishima, A., Rao, T. N., & Tryk, D. a. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1-21. http://doi.org/10.1016/S1389-5567(00)00002-2 [Google Scholar]
- Zainab N. Jameel, Adawiya J. Haider, Samar Y. Taha (2014). Synthesis of TiO2 Nanoparticles by Using Sol-Gel Method and its Applications as Antibacterial Agents. Eng. & Tech. Journal Vol. 32. Part (B). No.3, p.418-426. [Google Scholar]
- Verdier, T., Coutand, M., Bertron, A., & Roques, C. (2014). Antibacterial Activity of TiO2 Photocatalyst Alone or in Coatings on E. coli: The Influence of Methodological Aspects. Coatings, 4(3), 670-686. http://doi.org/10.3390/coatings4030670 [CrossRef] [Google Scholar]
- Guo, H., Lee, S. C., Li, W. M., & Cao, J. J. (2003). Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmospheric Environment, 37(1), 73-82. http://doi.org/10.1016/S1352-2310(02)00724-0 [CrossRef] [Google Scholar]
- Finlayson-Pitts, B. J., & Jr, J. N. P. (1997). Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276(5315), 1045-1052. [CrossRef] [Google Scholar]
- Monod, A., Sive, B. C., Avino, P., Chen, T., Blake, D. R., & Rowland, F. S. (2001). Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmospheric Environment, 35(1), 135-149. [CrossRef] [Google Scholar]
- Convertino, A., Leo, G., Striccoli, M., Di Marco, G., & Curri, M. L. (2008). Effect of shape and surface chemistry of TiO2 colloidal nanocrystals on the organic vapor absorption capacity of TiO2/PMMA composite. Ba-abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., & Takriff, M. S. (2012). Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. International Journal of ELECTROCHEMICAL SCIENCE, 7, 4871-4888. Retrieved from www.electrochemsci.org [Google Scholar]
- Zainab N. Jameel, Adawiya J. Haider, Samar Y. Taha, Shubhra Gangopadhyay and Sangho Bok. (2016). Evaluation of Hybrid Sol-gel Incorporated with Nanoparticles as Nano Paint., AIP Conf. Proc. 1758, 020001-1-020001-14; http://doi:10.1063/1.4959377. [CrossRef] [Google Scholar]
- McCullagh, C., Robertson, J. C., Bahnemann, D., & Robertson, P. J. (2007). The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Research on Chemical Intermediates, 33(3-5), 359-375. http://doi.org/10.1163/156856707779238775 [CrossRef] [Google Scholar]
- Sirimahachai, U., Phongpaichit, S., & Wongnawa, S. (2009). Evaluation of bactericidal activity of TiO 2 photocatalysts: a comparative study of laboratory-made and commercial TiO 2 samples. Songklanakarin J Sci Technol, 31(5), 517-525. [Google Scholar]
- Chen, L., Graham, M. E., Li, G., Gentner, D. R., Dimitrijevic, N. M., & Gray, K. A. (2009). Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films, 517(19), 5641-5645. http://doi.org/http://dx.doi.org/10.1016/j.tsf.2009.02.075 [CrossRef] [Google Scholar]
- Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO 2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. [CrossRef] [Google Scholar]
- Gao, K., Zhou, S., & Zhao, X. (2011). Preparation and Characterization of Zn-Containing Hydroxyapatite/TiO2 Composite Coatings on Ti Alloys. Materials Science Forum, 685, 367-370. http://doi.org/10.4028/www.scientific.net/MSF.685.367 [CrossRef] [Google Scholar]
- Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M., & Bae, Y. C. (2004). Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 163(1-2), 37-44. [CrossRef] [Google Scholar]
- Taga, Y. (2009). Titanium oxide based visible light photocatalysts: Materials design and applications. Thin Solid Films, 517(10), 3167-3172. http://doi.org/http://dx.doi.org/10.1016/j.tsf.2008.11.087 [CrossRef] [Google Scholar]
- Zieli, B., Grzechulska, J., Grzmil, B., & Morawski, A. W. (2001). Photocatalytic degradation of Reactive Black 5 A comparison between TiO 2-Tytanpol A11 and TiO 2-Degussa P25 photocatalysts, 35, 3-9. [Google Scholar]
- Jimmy, Y., Yu, J., & Zhao, J. (2002). Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Applied Catalysis B: Environmental, 36(1), 31-43. [CrossRef] [Google Scholar]
- Malnieks, K., Mezinskis, G., & Pavlovska, I. (2015). Optical, Photocatalytical and Structural Properties of TiO2-SiO2 Sol-Gel Coatings on High Content SiO2 Enamel Surface. Materials Science, 21(1), 100-104. Retrieved from http://dx.doi.org/10.5755/j01.ms.21.1.5188 [CrossRef] [Google Scholar]
- Reli, M., Kočí, K., Matějka, V., Kovář, P., & Obalová, L. (2012). Effect of Calcination Temperature and Calcination Time on the Kaolinite/TiO2 Composite for Photocatalytic Reduction of Co2. GeoScience Engineering, 58(4), 10-22. http://doi.org/10.2478/v10205-011-0022-2 [Google Scholar]
- Zhang, H., & Banfield, J. F. (2000). Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2. The Journal of Physical Chemistry B, 104(15), 3481-3487. http://doi.org/10.1021/jp000499j [CrossRef] [Google Scholar]
- Yu, J., Yu, J. C., Ho, W., & Jiang, Z. (2002). Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 26(5), 607-613. http://doi.org/10.1039/B200964A [CrossRef] [Google Scholar]
- Yu, J. C., Yu, J., Ho, W., & Zhao, J. (2002). Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 331-339. http://doi.org/10.1016/S1010-6030(02)00060-6 [CrossRef] [Google Scholar]
- Bessekhouad, Y., Robert, D., & Weber, J. V. (2003). Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 157(1), 47-53. http://doi.org/http://dx.doi.org/10.1016/S1010-6030(03)00077-7 [CrossRef] [Google Scholar]
- Maira, A.., Coronado, J.., Augugliaro, V., Yeung, K.., Conesa, J.., & Soria, J. (2001). Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene. Journal of Catalysis, 202(2), 413-420. http://doi.org/10.1006/jcat.2001.3301 [CrossRef] [Google Scholar]
- Huang, C., Bai, H., Huang, Y., Liu, S., Yen, S., & Tseng, Y. (2012). Synthesis of neutral SiO 2/TiO 2 hydrosol and its application as antireflective self-cleaning thin film. International Journal of Photoenergy, 2012. http://doi.org/10.1155/2012/620764 [Google Scholar]
- Thangavelu, K., Annamalai, R., & Arulnandhi, D. (2013). Preparation and Characterization of Nanosized TiO2 Powder by Sol-Gel Precipitation Route. International Journal of Emerging Technology and Advanced Engineering, 3(1), 636-639. [Google Scholar]
- Kusmahetiningsih, N., & Sawitri, D. (2012). Application of TiO2 for Self Cleaning in Water Based Paint with Polyethylene Glycol (PEG) as Dispersant. International Conference on Chemical and Material Engineering, 5-10. [Google Scholar]
- Liu, G., Zhang, X., Xu, Y., Niu, X., Zheng, L., & Ding, X. (2005). The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere, 59(9), 1367-1371. [CrossRef] [Google Scholar]
- Riegel, G., & Bolton, J. R. (1995). Photocatalytic Efficiency Variability in TiO2 Particles. The Journal of Physical Chemistry, 99(12), 4215-4224. http://doi.org/10.1021/j100012a050 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.