Open Access
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
Article Number 07004
Number of page(s) 5
Section Information Science and Engineering
Published online 09 April 2018
  1. Kwon J H and Jekeli C Gravity requirements for ultra-precise inertial navigation J. Navig. 58 479-92 (2005) [Google Scholar]
  2. David W. Harriman and J. Chris Harrison Gravity-Induced Errors in Airborne Inertial Navigation J.Guidance. 9 419-426 (1986) [Google Scholar]
  3. URL of EGM2008: [Google Scholar]
  4. Jing W, Gongliu Y, Xiangyun L and Zhou X Application of the spherical harmonic gravity model in high precision inertial navigation systems Meas. Sci. Technol. 27 095103 (2016) [Google Scholar]
  5. Zhou X, Gongliu Yang, Jing W and Jing L An improved gravity compensation method for high-precision free-INS based on MEC-BP-AdaBoost Meas. Sci. Technol. 27 125007 (2016) [CrossRef] [Google Scholar]
  6. Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K. An Earth Gravitational Model to Degree 2160: EGM2008. In Proceedings of the European Geosciences Union General Assembly 2008, Vienna, Austria, 13–18 (2008) [Google Scholar]
  7. Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) J. Geophys. Res. Solid Earth 117 1-38 (2012) [CrossRef] [Google Scholar]
  8. D. Titterton and J. Weston, Strapdown Inertial Navigation Technology. (U.K.: The Institution of Electrical Engineers 2004) [Google Scholar]
  9. Paul D. Groves Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (London: Artech House 2008) [Google Scholar]
  10. Jekeli C Precision free-inertial navigation with gravity compensation by an onboard gradiometer Journal of Guidance, Control and Dynamic. 29 704–13 (2006) [Google Scholar]
  11. Chi-Tsong Chen. Linear System Theory Design (Oxford University Press, USA 1998) [Google Scholar]
  12. Wellenhof B H and Moritz H Physical Geodesy 2nd edn (Graz: Springer 2005) [Google Scholar]
  13. Xiao Z., Gongliu Y., Qingzhong C. and Jing W. A novel gravity compensation method for high precise free-ins based on extreme learing machine Sensors. 16 2019 (2016) [Google Scholar]
  14. Ruonan W, Qiuping W, Fengtian H, Tianyi L, Peida H and Haixia L Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems Sensors. 16 2177 (2016) [Google Scholar]
  15. Jing W, Gongliu Y An Online Gravity Modeling Method Applied for High Precision Free-INS. Sensors 16 1541 (2016) [Google Scholar]
  16. Jekeli C, Lee J K and Kwon J H 2007 On the computation and approximation of ultra-high-degree spherical harmonic series [J]. Journal of Geodesy, 81 603-615 (2007) [CrossRef] [Google Scholar]
  17. Wei Zi-Qing. Recurrence Relations for Fully Normalized Associated Legendre Functions and Their Derivatives and Integrals. Geomatics and Information Science of Wuhan University, 41 27-36 (2016) [Google Scholar]
  18. Jiancheng Fang, LinZhouting Chen, and Jifeng Yao. An Accurate Gravity Compensation Method for High-Precision Airborne POS. IEEE Transactions on Geoscience and Remote Sensing, 52 (2014) [Google Scholar]
  19. Dai D, Wang X, Zhan D and Huang Z. An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference. Sensors, 14, 16322 (2014) [CrossRef] [Google Scholar]
  20. Siouris G M. Gravity modeling in aerospace applications. Aerospace Science and Technology, 13 301-315 (2009) [CrossRef] [Google Scholar]
  21. Gleason D. Critical Role of Gravity Compensation in a Stand-Alone Precision INS. DARPA PINS Meeting, Arligton, Virginia (2003) [Google Scholar]
  22. Jekeli C. Gravity on Precise Short-Term, 3-D Free Inertial Navigation. Navigation, 44 347-357 (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.