Open Access
Issue
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
Article Number 07001
Number of page(s) 7
Section Information Science and Engineering
DOI https://doi.org/10.1051/matecconf/201816007001
Published online 09 April 2018
  1. D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2004 [Google Scholar]
  2. D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, vol. 60, no 2, pp.91-110, 2004. [CrossRef] [Google Scholar]
  3. H. Bay, T. Tuytelaars, and L. Van Gool, “ Surf : Speeded up robust features”, in Computer Vision-ECCV 2006, pp.404-417, Springer, 2006. [CrossRef] [Google Scholar]
  4. E. Rublee, V. Rabaud, K. Konolige, and G. Braski, “ Orb : an efficient alternative to sift or surf”, in 2011 IEEE International Conference on Computer Vision(ICCV), pp. 2564-2571, IEEE, 2011. [CrossRef] [Google Scholar]
  5. R. A. Newcombe, S Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion : Real-time dense surface mapping and tracking”, in IEEE Intl. Symp. On Mixed and Augmented Reality(ISMAR), 2011. [Google Scholar]
  6. Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. [CrossRef] [Google Scholar]
  7. C. Kerl, J. Sturm, and D. Cremers, “Dense visual SLAM for RGB-D cameras”, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013. [Google Scholar]
  8. Ali, A.M., Nordin, M.J., SIFT based monocular SLAM with multi-clouds features for indoor navigation, TENCON 2010 - 2010 IEEE Region 10 Conference, 2010, pp. 2326–2331 [CrossRef] [Google Scholar]
  9. Z. Zhang, Y. Huang, C. Li, Y. Kang, Monocular vision simultaneous localization and mapping using SURF, in World Congress on Intelligent Control and Automation, 2008, pp. 1651–1656. [Google Scholar]
  10. Y. Ye, The research of SLAM monocular vision based on the improved surf feature, International Conference on Computational Intelligence and Communication Net-works, Hong Kong, China, 2014:344–348. [Google Scholar]
  11. Y. T. Wang, Y. C. Feng, Data association and map management for robot SLAM using local invariant features. IEEE International Conference on Mechatronics and Automation (ICMA), 2013. [Google Scholar]
  12. E. Rosten and T. Drummond. Machine learning for highspeed corner detection. In European Conference on Computer Vision, volume I, 2006. [Google Scholar]
  13. M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent elementary features. In European Conference on Computer Vision, 2010. [Google Scholar]
  14. R. Mur-Artal and J. D. Tardos, Fast relocalisation and loop closing in keyframe-based SLAM, in IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 2564-2571. [Google Scholar]
  15. X. Fen and W. Zhen, “An embedded visual SLAM algorithm based on Kinect and ORB features,” in 34th Chinese Control Conference, July 2015, pp. 6026–6031. [Google Scholar]
  16. G. Xin, X T. Zhang, X.Wang, and J. Song, “A RGBD SLAM algorithm combining ORB with PROSAC for indoor mobile robot”, International Conference Computer Science and Network Technology, Harbin, pp. 71-74, 2015. [Google Scholar]
  17. L. Jun, T. Pan, K. Tseng, J. Pan, Design of a monocular simultaneous localisation and mapping system with ORB feature. In Proceedings of 2013 IEEE International Conference Multimedia and Expo, San Jose, CA, USA, 15–19 July 2013; pp. 1–4. [Google Scholar]
  18. G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November 2007. 1 [Google Scholar]
  19. G. Klein and D. Murray. Improving the agility of keyframebasedSLAM. In European Conference on Computer Vision, 2008. [Google Scholar]
  20. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D Mapping: Using depth cameras for dense 3D modeling of indoor environments. In the 12th International Symposium on Experimental Robotics (ISER), December 2010. [Google Scholar]
  21. P. J. Best and N. D. Mckay, A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), vol. 14, no. 2,1992. [Google Scholar]
  22. B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. D. Tardos, A comparison of loop closing techniques in monocular SLAM, Robotics and Autonomous Systems, vol. 57, no.12, pp. 1188-1197,2009. [CrossRef] [Google Scholar]
  23. E. D. Eade and T. W. Drummond. Unified loop closing and recovery for real time monocular SLAM. In Proc. BMVC, 2008. [Google Scholar]
  24. D. Galvez-Lopez and J. D. Tardos. Real-time loop detection with bags of binary words. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 51-58, September 2011. [Google Scholar]
  25. M. Cummins and P. Newman, “Appearance-only SLAM at large scale with FAB-MAP 2.0,” The International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123, 2011. [CrossRef] [Google Scholar]
  26. B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle Adjustment - a Modern Synthesis, LNCS, Springer Verlag, 1883:298-375, 2000. [Google Scholar]
  27. H. Strasdat, J. M. M. Montiel, and A. Davison, “Scale drift-aware largescale monocular SLAM,” in Proc. of Robotics: Science and Systems(RSS), 2010. [Google Scholar]
  28. H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, Double window optimisation for constant time visual SLAM, in IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, November 2011, pp. 2352–2359. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.