Open Access
Issue
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 06007
Number of page(s) 9
Section Modelling of structural materials, composites and nanomaterials
DOI https://doi.org/10.1051/matecconf/201815706007
Published online 14 March 2018
  1. A. K. Noor, W. S. Burton, C. W. Bert, Computational models for sandwich panels and shells. Applied Mechanics Reviews 49 (3), 155-199 (1996) [CrossRef] [Google Scholar]
  2. J. Hohe, L. Librescu, Advances in the structural modelling of elastic sandwich panels. Mechanics of Advances Materials & Structures 11, 395-424 (2004) [CrossRef] [Google Scholar]
  3. I. Kreja, A literature review on computational models for laminated composite and sandwich panels. Central European Journal of Engineering 1 (1), 59-80 (2011) [Google Scholar]
  4. E. E. Gdoutos, I. M. Daniel, K. A. Wang, Compression face wrinkling of composite sandwich structures. Mechanics of Materials 35 (3-6), 511-522 (2003) [CrossRef] [Google Scholar]
  5. V. Koissin, A. Shipsha, V. Skvortsov, Effect of physical nonlinearity on local buckling in sandwich beams, Journal of Sandwich Structures and Materials 12, 477-494 (2010) [CrossRef] [Google Scholar]
  6. C. A. Steeves, N. A. Fleck, Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending, Part II: experimental investigation and numerical modelling. International Journal of Mechanical Sciences, 46, 585-608 (2004) [CrossRef] [Google Scholar]
  7. M. Chuda-Kowalska, M. Malendowski, Sensitivity analysis of behavior of sandwich plate with PU foam core with respect to boundary conditions and material model. Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, CRC Press, 125-128 (2016) [CrossRef] [Google Scholar]
  8. J. B. Dafedar, Y. M. Desai, A. A. Mufti, Stability of sandwich plates by mixed, higher-order analytical formulation. International Journal of Solids & Structures 40, 4501-4517 (2003) [CrossRef] [Google Scholar]
  9. L. R. Xu, A. J. Rosakis, Impact failure characteristics in sandwich structures, Part I: Basic failure mode selection. International Journal of Solids and Structures 39, 4215-4235 (2002) [CrossRef] [Google Scholar]
  10. E. Lolive, J-M. Berthelot, Non-linear behaviour of foam cores and sandwich materials, Part 2: indentation and three-point bending. Journal of Sandwich Structures and Materials 4 (4), 297-352 (2002) [CrossRef] [Google Scholar]
  11. J. Pozorska, Z. Pozorski, Analysis of the failure mechanism of the sandwich panel at the support. Procedia Engineering 177, 168-174 (2017) [CrossRef] [Google Scholar]
  12. L. Heselius, Wrinkling analysis offlat faced sandwich panels with respect to bonding strength and core properties with mineral wool as core material. Technischen Universitat Darmstadt (2005) [Google Scholar]
  13. R. Studziński, Z. Pozorski, Experimental and numerical analysis of sandwich panels with hybrid core. Journal of Sandwich Structures and Materials, DOI: 10.1177/1099636216646789 (2016) [Google Scholar]
  14. A. W. Giunta d’Albani et al., Mass loss and flammability of insulation materials used in sandwich panels during the pre-flashover phase of fire. Fire and Materials, DOI: 10.1002/fam.2418 (2017) [Google Scholar]
  15. J. Pozorska, Z. Pozorski, The influence of the core orthotropy on the wrinkling of sandwich panels. Journal of Applied Mathematics and Computational Mechanics, 14 (4), 133-138 (2015) [CrossRef] [Google Scholar]
  16. Z. Pozorski, Sandwich panels in civil engineering - theory, testing and design (Wydawnictwo Politechniki Poznańskiej, Poznań, 2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.