Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 06003
Number of page(s) 13
Section Modelling of structural materials, composites and nanomaterials
Published online 14 March 2018
  1. G. A. Maugin, The thermomechanics of plasticity and fracture. (Cambridge University Press, Cambridge, 1992) [Google Scholar]
  2. J. C. Simo, T. J. R. Hughes, Computational inelasticity. (Springer, New Yoerk, 1998) [Google Scholar]
  3. E. A. de Souza Neto, D. Perić, D. R. J. Owen, Computational methods for plasticity, Theory and applications. (John Wiley & Sons Ltd., Singapore, 2008) [Google Scholar]
  4. S. Nemat-Nasser, Plasticity, A treatise on finite deformation of heterogenous inelastic Materials. (Cambridge University Press, Cambridge, 2004) [Google Scholar]
  5. A. Bertran, Elascity and plasticity of large deformations, An introduction. 3rd ed. (Spinger, Berlin, Heidelberg, 2013) [Google Scholar]
  6. D. R. J. Owen, E. Hinton, Finite elements in plasticity, Theory and practice. (Pineridge Press, Swansea, 1980) [Google Scholar]
  7. T. Belytschko, W. K. Liu, B. Moran, Nonlinear finite elements for continua and structures. (John Wiley & Sons LTD, Chichester, 2000) [Google Scholar]
  8. M. A. Crisfield, Non-linear finite element analysis of solids and structures, Essentials, Vol. 1 (John Wiley & Sons Ltd., Chichester, 2000) [Google Scholar]
  9. M. A. Crisfield, Non-linear finite element analysis of solids and structures, Advanced topics, Vol. 2. (John Wiley & Sons Ltd., Chichester, 2001) [Google Scholar]
  10. K. J. Bathe, Finite element procedures. (Prentice-Hall INC., Englewood Cliffs, New Jersey, 1995) [Google Scholar]
  11. C. Truesdell, R.A. Toupin, The classical field theories, Handbook der physic, III/1 (Springer-Verlag, Berlin, 1960) [Google Scholar]
  12. C. Truesdell, W. Noll, The Nonlinear Field Theories, Handbook der Physic, III/3 (Springer-Verlag, Berlin, 1965) [Google Scholar]
  13. M. E. Gurtin, An introduction to continuum mechanics. (Academic Press, Orlando, 1981) [Google Scholar]
  14. J. E. Marsden, T. J. R. Hughes, Mathematical foundations of elasticity. (Dover, New York, 1994) [Google Scholar]
  15. R. W. Ogden, Non-linear elastic deformations. (Ellis Horwood Ltd., West Sussex, 1984) [Google Scholar]
  16. P. Cairlet, Mathematical Elasticity. Three-dimenasional elasticity, Vol. 1 (North-Holland Publishing Company, Amsterdam, 1988) [Google Scholar]
  17. R. J. Asaro, Micromechanics of crystals and polycrystals, Advances in Applied Mechanics, Vol. 23 (Academic Press, New York, 1983) [Google Scholar]
  18. G. I. Taylor, Analysis of plastic strain in a cubic crystal, in Stephen Timoshenko 60th aniversary volume, ed., J.M. Lessels. (Macmillan, New York, 1938) [Google Scholar]
  19. R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids 14, 95-102 (1966) [CrossRef] [Google Scholar]
  20. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech Phys Solids. 20, 401-413 (1972) [CrossRef] [Google Scholar]
  21. R.J. Asaro, J.R. Rice, Strain localization in ductile single crystals. J Mech Phys Solids. 25, 309-338 (1977) [CrossRef] [Google Scholar]
  22. R. J. Asaro, Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta Metall. 27, 445-453 (1979) [CrossRef] [Google Scholar]
  23. C. Sansour, J. Bocko, On the numerical implications of multiplicative inelasticity with an anisotropic elastic constitutive law. Int. J. Num. Meth. Engrg. 5 (14), 2131-2160 (2003) [CrossRef] [Google Scholar]
  24. L. Écsi, P. Élesztős, Moving toward a more realistic material model of a ductile material with failure mode transition. Mat.-wiss. u. Werkstofftech. 5 (43), 379-387 (2012) [Google Scholar]
  25. J. Bonet, R. D. Wood, Nonlinear continuum mechanics for finite element analysis. 2nd ed. (Cambridge University Press, Cambridge 2008) [Google Scholar]
  26. G. A. Holzapfel, Nonlinear solid mechanics, A continuum approach for engineering. (John Wiley & Sons LTD., Chichester, 2001) [Google Scholar]
  27. L. Écsi, P. Élesztős, An improved heat equation to model ductile-to-brittle failure mode transition at high strain rates using fully coupled thermal-structural finite element analysis. Defect Diffus Forum. 354, 1-23 (2014) [CrossRef] [Google Scholar]
  28. W. Müller, Beitrag zur Charakterisierung von Blechwerkstoffen unter merachsiger Beamspruchung. (Springer Verlag, Berlin-Heidelberg, 1996) [CrossRef] [Google Scholar]
  29. H. Franke, Lexikon der Physik, Franck’ sche Verlagshandlung. (W. Keller & Co, Stuttgart, 1959) [Google Scholar]
  30. G. Izrael, J. Bukoveczky, L. Gulan, P. Fípek, Modeling and operating verification in the design process of mobile working machines. Journal of Engineering 3, 195-198 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.