Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 02045
Number of page(s) 8
Section Modelling and simulation, structural optimization
Published online 14 March 2018
  1. J. H. Lienhard, A Heat Transfer Textbook. third edition, Phlogiston Press. Cambridge, Massachusetts, USA, (2008). [Google Scholar]
  2. A. Žukauskas, Enhancement of forced convection heat transfer in viscous fluid flows. Int. J. Heat Mass Transfer 37, 207-212 (1994) [CrossRef] [Google Scholar]
  3. F. Dumouchel, J. C. Lecordier, P. Paranthoen, The effective Reynolds number of a heated cylinder. Int. J. Heat Mass Transfer 41, 1787-1794 (1998) [CrossRef] [Google Scholar]
  4. C. K. Huang, Y. J. Cheng, Y. P. Kang, Combined effect of grid turbulence and unsteady wake on convective heat transfer around a heated cylinder. Int. Comm. Heat Mass Transfer 34, 1091-1100 (2007) [CrossRef] [Google Scholar]
  5. R. Perrin, M. Braza, E. Cid, S. Cazin, P. Chassaing, C. Mockett, T. Reimann, F. Thiele, Coherent and turbulent process analysis in the flow past a circular cylinder at high Reynolds number. J. Fluid and Structures 24, 1313-1325 (2008) [CrossRef] [Google Scholar]
  6. S. Bhattacharyya, A. K. Singh, Vortex shedding and heat transfer dependence on effective Reynolds number for mixed convection around a cylinder in cross flow. Int. J. Heat Mass Transfer 53, 3202-3212 (2010) [CrossRef] [Google Scholar]
  7. M. M. Billah, M.M. Rahman, U. M. Sharif., N.A. Rahim, R. Saidur, M. Hasanuzzaman, Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder. Int. Com. Heat Mass Trans. 38, 1093-1103 (2011) [CrossRef] [Google Scholar]
  8. M. Boirlaud, D. Couton, F. Plourde, Direct Numerical Simulation of the turbulent wake behind a heated cylinder. Int. J. Heat Fluid Flow 38, 82-93 (2012) [CrossRef] [Google Scholar]
  9. J. G. Wissink, W. Rodi, Heat transfer from the stagnation area of a heated cylinder at ReD = 140,000 affected by free-stream turbulence. Int. J. Heat Mass Transfer 54, 2535-2541 (2011) [CrossRef] [Google Scholar]
  10. G. Juncu, A numerical study of momentum and forced convection heat transfer around two tandem circular cylinders at low Reynolds numbers. Part II: Forced convection heat transfer. Int. J. Heat Mass Transfer 50, 3799-3808 (2007) [CrossRef] [Google Scholar]
  11. N. Mahir, Z. Altaç, Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int. J. Heat Fluid Flow 29, 1309-1318 (2008) [CrossRef] [Google Scholar]
  12. H. S. Yoon, J. B. Lee, J. H. Seo, H. S. Park, Characteristics for flow and heat transfer around a circular cylinder near a moving wall in wide range of low Reynolds number. Int. J. Heat and Mass Transfer 53, 5111-5120 (2010) [CrossRef] [Google Scholar]
  13. A. Quintino, Experimental analysis of the heat transfer coefficient enhancement for a heated cylinder in cross-flow downstream of a grid flow perturbation. App. Thermal Eng. 35, 55-59 (2012) [CrossRef] [Google Scholar]
  14. C. Sak, R. Liu, D. S. K. Ting, G.W. Rankin, The role of turbulence length scale and turbulence intensity on forced convection from a heated horizontal circular cylinder. Exper. Thermanl and Fluid Science 31, 279-289 (2007) [CrossRef] [Google Scholar]
  15. E. Buyruk, H. Barrow, I. Owen, The influence of adjacent tubes on Convection Heat Transfer from a Heated Tube in Cross-flow. Fourth UK National Conference on Heat Transfer, I. Mech. E. Conference Trans., 135-139 (1995) [Google Scholar]
  16. S. Sanitjai, R. J. Goldstein, Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat and Mass Transfer 47, 4795-4805 (2004) [CrossRef] [Google Scholar]
  17. J. W. Scholten, D. B. Murray, Unsteady heat transfer and velocity of a cylinder in cross flow I1. High freestream turbulence. Int. J. Heat Mass Transfer 41, 1149-1156 (1998) [CrossRef] [Google Scholar]
  18. R. Lenhard, K. Kaduchová, J. Jandačka, J., Numerical Simulation in Indirectly heated hot Water Heater. Adv. Material Research, 1693-1697 (2014) [CrossRef] [Google Scholar]
  19. A. Bejan, A. D. Kraus, Heat transfer Handbook. John Wiley and sons, Inc., Hoboken, New Jersey, (2003) [Google Scholar]
  20. V. P. Isatchenko, V. A. Osepova, A.S. Sukomel, Heat transfer (Теплопеpеоача). Energoizdat, Moskva (1981) [Google Scholar]
  21. A. Zhukauskas, A. Slantchiauskas, Heat transfer at trubulent fluid flow (Теплоотоача в турбулентном потоке жиокости). Mintis, Vijnius, Litva (1973) [Google Scholar]
  22. H. Hausen, Heat transfer in co-current, conter-current and cross flow (Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom). Springer Verlag, Berlin, Heidelberg, (1976) [Google Scholar]
  23. M. Kaviany, Principle of Convective Heat Transfer. Springer-verlag, New York, Inc. Second edition, ISBN 0-387-95162-8, (2001) [CrossRef] [Google Scholar]
  24. S. O. Atayilmay, Transient and steady-state natural convection heat transfer from a heated horizontal concrete cylinder. Int. J. of Thermal Sci. 49, 1933-1943 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.