Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 02021
Number of page(s) 7
Section Modelling and simulation, structural optimization
Published online 14 March 2018
  1. S. H. Kang, Y. T. Im, Three-dimensional thermo-elasto-plastic finite element modeling of quenching process of plain carbon steel in coulee with phase transformation. J. Mater Proc Technol. 192-193, 381-390 (2007) [Google Scholar]
  2. A. Bokota, T. Domanski, Modelling and numerical analysis of hardening phenomena of tools steel elements. Arch Metall Mater. 54 (3), 575-587 (2009) [Google Scholar]
  3. T. Domanski, A. Sapietova, M. Saga, Application of Abaqus software for the modeling of surface progressive hardening. Procedia Engineering 177, 64-69 (2017) [CrossRef] [Google Scholar]
  4. D. Richardson, J. Nilsson, W. Clarkson, High power fiber lasers: current status and future perspectives. J. Opt Soc Am. B. 27, 63-92 (2010) [Google Scholar]
  5. A. De, T. Debroy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters. Welding Journal 84 101-112 (2005) [Google Scholar]
  6. X. Jin, L. Li, Y. Zhang, A heat transfer model for deep penetration laser welding based on an actual keyhole. Int J Heat Mass Tran. 46, 15–22 (2003) [CrossRef] [Google Scholar]
  7. L. Han, F.W. Liou, Numerical investigation of the influence of laser beam mode on melt pool. Int J Heat Mass Tran. 47, 4385-4402 (2004) [CrossRef] [Google Scholar]
  8. J. Winczek, A. Modrzycka, E. Gawronska, Analytical description of the temperature field induced by laser heat source with any trajectory. Procedia Engineering 149, 553-558 (2016) [CrossRef] [Google Scholar]
  9. M. Kubiak, W. Piekarska, Comprehensive model of thermal phenomena and phase transformations in laser welding process. Computers & Structures 172, 29-39 (2016) [CrossRef] [Google Scholar]
  10. M. Kubiak, W. Piekarska, S. Stano, Modelling of laser beam heat source based on experimental research of Yb: YAG laser power distribution, Int J Heat Mass Tran, 83, 679-689 (2015) [CrossRef] [Google Scholar]
  11. M. Kubiak, W. Piekarska, Z. Saternus, T. Domański, Numerical prediction of fusion zone and heat affected zone in hybrid Yb: YAG laser+ GMAW welding process with experimental verification. Procedia Engineering 136, 88-94 (2016) [CrossRef] [Google Scholar]
  12. R. Gnatowska, T. Rybak, Numerical Analysis of Heat Transfer around 2D Circular Cylinder in Pulsation Inflow. AIP Conference Proceedings 1648, 850125 (2015) [CrossRef] [Google Scholar]
  13. R. Dyja, E. Gawronska, A. Grosser, Numerical problems related to solving the Navier-Stokes equations in connection with the heat transfer with the use of FEM. Procedia Engineering 177, 78-85 (2016) [Google Scholar]
  14. T. Skrzypczak, E. Węgrzyn-Skrzypczak, Modeling of thermal contact through gap with the use of finite element method. J Appl Math. Comput Mech. 14 (4), 145-152 (2015) [Google Scholar]
  15. T. Skrzypczak, A finite element multi-mesh approach for heat transport between disconnected regions. Procedia Engineering 177, 204-209 (2017) [CrossRef] [Google Scholar]
  16. S. V. Patankar, Numerical heat transfer and fluid flow. (Taylor & Francis, USA, 1990) [Google Scholar]
  17. M. A. Oliver, R. Webster, Kriging: a method of interpolation for geographical information system. Int. J Geogr Inf Sys. 4, 313-332 (1990) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.