Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 02011
Number of page(s) 6
Section Modelling and simulation, structural optimization
Published online 14 March 2018
  1. R. Martinuzzi, C. Tropea, The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. ATJFE 115, 85-85 (1993) [Google Scholar]
  2. H. Sakamoto, H. Haniu, Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 31 (1), 41-66 (1988) [Google Scholar]
  3. E. Logan, W.H. Schofield, Turbulent shear flow over surface mounted obstacles. Int. J Heat Mass Transfer 112, 376-385 (1990) [Google Scholar]
  4. R.J. Martinuzzi, B. Havel, Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement. J. Fluids Eng. 122 (1), 24-31 (2000) [CrossRef] [Google Scholar]
  5. R. Gnatowska, Aerodynamic Characteristics of Three-Dimensional Surface-Mounted Objects in Tandem Arrangement Int. J. Turbo Jet. Eng. 28 (1), 21-29 (2011) [Google Scholar]
  6. R. Gnatowska, M. Sosnowski, V. Uruba, CFD modelling and PIV experimental validation of flow fields in urban environments. In E3S Web of Conferences 14, 01034 (EDP Sciences 2017) [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. D. Ferreira, A. C. M. Sousa, D. X. Viegas, Prediction of building interference effects on pedestrian level comfort. J. Wind Eng. Ind. Aerodyn. 90 (4), 305-319 (2002) [CrossRef] [Google Scholar]
  8. P. J. Richards, R. P. Hoxey, Appropriate boundary conditions for computational wind engineering models using the k-ϵ. turbulence model. J. Wind Eng. Ind. Aerodyn. 46, 145-153 (1993) [CrossRef] [Google Scholar]
  9. P. J. Richards, G. D. Mallinson, D. McMillan, Y. F. Li, Pedestrian level wind speeds in downtown Auckland. Wind Struct. 5 (2-3-4), 151-164 (2002) [CrossRef] [Google Scholar]
  10. J. Franke, C. Hirsch, A. G. Jensen, H. W. Krüs, M. Schatzmann, P. S. Westbury, N. G. Wright, Recommendations on the use of CFD in predicting pedestrian wind environment. (Final report, 2004) [Google Scholar]
  11. M. Huptas, W. Elsner, Steady and Unsteady Simulation of Flow Structure of Two Surface-mounted Square Qbstacles. Task Quarterly 12 (3), 197-207 (2008) [Google Scholar]
  12. J. C. R. Hunt, C. J. Abell, J. A. Peterka, H. Woo, Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86 (1), 179-200 (1978) [CrossRef] [Google Scholar]
  13. I. P. Castro, A. G. Robins, The flow around a surface-mounted cube in uniform and turbulent streams. J. Fluid Mech. 79 (2), 307-335 (1977) [CrossRef] [Google Scholar]
  14. G. Iaccarino, A. Ooi, P. A. Durbin, M. Behnia, Reynolds averaged simulation of unsteady separated flow. Int. J Heat Mass Transfer. 24 (2), 147-156 (2003) [Google Scholar]
  15. I. P. Castro, Measurements in shear layers separating from surface-mounted bluff bodies. J. Wind Eng. Ind. Aerodyn. 7 (3), 253-272 (1981) [CrossRef] [Google Scholar]
  16. R. Gnatowska, A Study of Downwash Effects on Flow and Dispersion Processes around Buildings in Tandem Arrangement. Pol. J. Environ. Stud. 24 (4), (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.