Open Access
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
Article Number 02008
Number of page(s) 9
Section Modelling and simulation, structural optimization
Published online 14 March 2018
  1. A. Bokota, S. Iskierka, Finite element method for solving diffusion-convections problems in the presence of a moving heat point source. Finit. Elem. Anal. Des. 17 (2), 89-99 (1994) [CrossRef] [Google Scholar]
  2. T. Skrzypczak, E. Wegrzyn-Skrzypczak, J. Winczek, Effect of natural convection on directional solidification of pure metal. Arch. Metal. Mater. 60 (2), 835-841 (2015) [CrossRef] [Google Scholar]
  3. D. M. Stefanescu, Science and Engineering of Casting Solidification. (New York, Kluwer Academic, 2002) [CrossRef] [Google Scholar]
  4. W. Feng. Q. Xu, B. Liu, Microstructure simulation of alluminium alloy using parallel computng technique. ISIJ International 42 (7), 702-707 (2002) [Google Scholar]
  5. G. Michalski, N. Sczygiol, Using CUDA architecture for the computer simulation of the casting solidification process. Hong Kong : Lecture Notes in Engineering and Computer Science, 933-937 (2014) [Google Scholar]
  6. E. Gawronska, N. Sczygiol, Application of mixed time partitioning methods to raise the efficiency of solidification modelling. 12th International Symposium on Symbolic and Numeric Algorithms (SYNASC), 99-103 (2010) [Google Scholar]
  7. W. D. Bennon, F. P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems - I. Model formulation. Int. J. Heat Mass Transf. 30 (10), 2161-2170 (1987) [Google Scholar]
  8. F. Brezzi, On the existence, uniquess and approximation of saddle-point problems arising from lagrangian multipliers. Esaim Math. Model. Numer. Anal. 8 (R2), 129-151 (1974) [Google Scholar]
  9. A. N. Brooks, T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering – Special Edition on the 20th Anniversary, 199-259 (1990) [Google Scholar]
  10. N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes. Int. J. Numer. Methods Eng. 60 (5), 1-38 (2004) [CrossRef] [Google Scholar]
  11. R. Dyja, E. Gawronska, A. Grosser, Numerical problems related to solving the Navier-Stokes equations in connection with the heat transfer with the use of FEM. Procedia Eng. 177, 78-85 (2017) [CrossRef] [Google Scholar]
  12. M. Zych, Effect of mass matrix forms on numerical simulation results in heat conduction modeling. J. Appl. Math. Comput. Mech. 14 (3), 149-156 (2015) [CrossRef] [Google Scholar]
  13. H. K. Kodali, B. Ganapathysubramanian, A computational framework to investigate charge transport in heterogeneous organic photovoltaic devices. Comput. Methods Appl. Mech. Eng. 247, 113-129 (2012) [Google Scholar]
  14. S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. Modern Software Tools in Scientific Computing, 163-202 (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.