Open Access
MATEC Web Conf.
Volume 153, 2018
The 4th International Conference on Mechatronics and Mechanical Engineering (ICMME 2017)
Article Number 01005
Number of page(s) 5
Section Novel Materials and Properties
Published online 26 February 2018
  1. Alawar, E.J. Bosze, and S.R. Nutt, “A Composite Core Conductor for Low Sag at High Temperatures,” IEEE Trans. Power Delivery, Vol. 20, pp. 2193-2199, (2005). [CrossRef] [Google Scholar]
  2. E.J. Bosze, A. Alawar, Y.I. Tsai, S.R. Nutt, D. Bryant, and G. Bowles,“Performance of a New Overhead Conductor Design using a Carbon/Glass Fiber Composite Core”, Intern. Conf. Overhead Lines, Fort Collins, Colorado, USA, pp. 121-135, (2006). [Google Scholar]
  3. E.J. Bosze, Y.I. Tsai, E. Barjasteh, S.R. Nutt, and D. Bryant, “Long-term Durability of the Composite Core Conductor ACCC/TW”, Intern. Conf. Overhead Lines, Fort Collins, Colorado, USA, pp. 516-525, (2008) [Google Scholar]
  4. 3M© Company, “Aluminum Conductor Composite Reinforced Technical Notebook (477 kcmil family),” © (March 2003), v.2.21. [Google Scholar]
  5. Berjozkina S, Sauhats A, Bargels V, et al. The technical and economic efficiency of using conductors with composite core in the transmission grid[C]// International Conference on the European Energy Market. IEEE, (2012):1-7. [Google Scholar]
  6. Burks B, Armentrout D L, Kumosa M. Failure prediction analysis of an ACCC conductor subjected to thermal and mechanical stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, (2010), 17(2). [CrossRef] [Google Scholar]
  7. Páczelt I, Beleznai R. Nonlinear contact-theory for analysis of wire rope strand using high-order approximation in the FEM[J]. Computers & Structures, (2011), 89(11):1004-1025. [CrossRef] [Google Scholar]
  8. Stanova E, Fedorko G, Fabian M, et al. Computer modelling of wire strands and ropes Part I: Theory and computer implementation[J]. Advances in Engineering Software, (2011), 42(6):305-315. [CrossRef] [Google Scholar]
  9. Frikha A, Cartraud P, Treyssède F. Mechanical modeling of helical structures accounting for translational invariance. Part 1: Static behavior[J]. International Journal of Solids & Structures, (2013), 50(9):1373-1382. [CrossRef] [Google Scholar]
  10. Jiang W G, Henshall J L, Walton J M. A concise finite element model for three-layered straight wire rope strand[J]. International Journal of Mechanical Sciences, (2000), 42(1):63-86. [CrossRef] [Google Scholar]
  11. Kumar K, Cochran J E. Closed-Form Analysis for Elastic Deformations of Multilayered Strands[J]. Journal of Applied Mechanics, (1987), 54(4):744-744. [CrossRef] [Google Scholar]
  12. Cardou A, Jolicoeur C. Mechanical Models of Helical Strands[J]. Applied Mechanics Reviews, (1997), 50(1):1. [CrossRef] [Google Scholar]
  13. Jiang W G, Yao M S, Walton J M. A concise finite element model for simple straight wire rope strand[J]. International Journal of Mechanical Sciences, (1999), 41(2): 143-161. [Google Scholar]
  14. Jun M A, Ge S R, Zhang D K. Distribution of wire deformation within strands of wire ropes[J]. Journal of China University of Mining and Technology, (2008), 18(3): 475-478. [CrossRef] [Google Scholar]
  15. JRLX/T (ACCC) Wire products, Far East Holding Composite Technology Co., Ltd[z], (2009). [Google Scholar]
  16. Gnanavel B K. Effect of interfacial contact forces in radial contact wire strand[J]. Archive of Applied Mechanics, (2011), 81(3):303-317. [CrossRef] [Google Scholar]
  17. GB/T 1179—2008, Round wire concentric lay overhead electrical stranded conductors[S], (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.