Open Access
Issue
MATEC Web Conf.
Volume 152, 2018
9th Eureca 2017 International Engineering Research Conference
Article Number 02001
Number of page(s) 17
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/201815202001
Published online 26 February 2018
  1. H. Williams, Road and rail transportation, 1st ed. New York: Facts on File, 50-52(2004). [Google Scholar]
  2. R. Abe and H. Kato, What led to the establishment of a rail-oriented city? Determinants of urban rail supply in Tokyo, Japa, 1950–2010, TRANSPORT POLICY, 58, 72-79 (2017). [CrossRef] [Google Scholar]
  3. F. Laroche, C. Sys, T. Vanelslander, E. Van de Voorde, Imperfect competition in a network industry: The case of the European rail freight market, TRANSPORT POLICY, 58, 53-61 (2017). [CrossRef] [Google Scholar]
  4. Z. Chen, J. Xue, A. Rose, K. Haynes, The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis, Transp Res Part A Policy Pract, 92, 232-245 (2016). [CrossRef] [Google Scholar]
  5. D. Connolly, G. Marecki, G. Kouroussis, I. Thalassinakis, P. Woodward, The growth of railway ground vibration problems — A review, Sci Total Environ, 568, 1276-1282 (2016). [Google Scholar]
  6. K. Abe, Y. Chida, P. E. Balde Quinay, K. Koro, “Dynamic instability of a wheel moving on a discretely supported infinite rail,” J. Sound Vib., 333, no. 15, 3413–3427 (2014). [CrossRef] [Google Scholar]
  7. N. Persson, Predicting Railway-Induced Ground Vibrations, Post Graduate, Lung University (2016). [Google Scholar]
  8. L. Auersch, The excitation of ground vibration by rail traffic: Theory of vehicle-track-soil interaction and measurements on high-speed lines, J. Sound Vib., 284, no. 1-2, 103–132 (2005). [CrossRef] [Google Scholar]
  9. J. C. O. Nielsen, G. Lombaert, S. François, A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities, J. Sound Vib., 345, 103–120 (2015). [CrossRef] [Google Scholar]
  10. W. Li, R. A. Dwight, T. Zhang, On the study of vibration of a supported railway rail using the semi-analytical finite element method, J. Sound Vib., 345, 121–145 (2015). [CrossRef] [Google Scholar]
  11. S. A. Köllõ, G. Köllõ, A. Puskás, Nexus of the Load Bearing Capacity of Rails and the Stiffness of the Optimized Sleepers,” Procedia Technol., 22, 312–318 (2016). [CrossRef] [Google Scholar]
  12. A. Benedetto, F. Tosti, L. Bianchini Ciampoli, A. Calvi, M. G. Brancadoro, A. M. Alani, Railway ballast condition assessment using ground-penetrating radar – An experimental, numerical simulation and modelling development, Constr. Build. Mater., 140, 508–520 (2017). [CrossRef] [Google Scholar]
  13. Z. Zhang, X. Zhang, H. Qiu, M. Daddow, Dynamic characteristics of track-ballast-silty clay with irregular vibration levels generated by high-speed train based on DEM, Constr. Build. Mater., 125, 564–573 (2016). [CrossRef] [Google Scholar]
  14. S. Kaewunruen and A. M. Remennikov, Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters, J. Sound Vib., 298, no. 1-2, 453–461 (2006). [CrossRef] [Google Scholar]
  15. S. Zhang, X. Xiao, Z. Wen, X. Jin, Effect of unsupported sleepers on wheel/rail normal load, Soil Dyn. Earthq. Eng., 28, no. 8, 662–673 (2008). [CrossRef] [Google Scholar]
  16. R. Ferrara, G. Leonardi, F. Jourdan, “SIIV - 5th International Congress - Sustainability of Road Infrastructures Numerical Modelling of Train Induced Vibrations, Procedia - Soc. Behav. Sci., 53, no. 0, 155–165 (2012). [Google Scholar]
  17. D. Inman, Engineering vibration, 4th ed. Boston: Pearson, 16 – 58, (2014). [Google Scholar]
  18. W. Zhai, K. Wang, J. Lin, Modelling and experiment of railway ballast vibrations, JSV, 270, no. 4-5, 673-683 (2004). [CrossRef] [Google Scholar]
  19. J. Stead and M. Kerr, Spc 232 concrete sleepers, (2012). [Google Scholar]
  20. D. P. Connolly, G. Kouroussis, P. K. Woodward, P. Alves Costa, O. Verlinden, M. C. Forde, Field testing and analysis of high speed rail vibrations, Soil Dyn. Earthq. Eng., 67, 102–118 (2014). [CrossRef] [Google Scholar]
  21. S. A. Suhairy, Prediction Of Ground Vibration From Railways, Undergraduate Graduate Thesis, Swedish National Testing and Research Institute (2000). [Google Scholar]
  22. I. Crespo-Chacón, J. García-de-la-Oliva, E. Santiago-Recuerda, On the Use of Geophones in the Low-Frequency Regime to Study Rail Vibrations, Procedia Engineering, 143, 782-794 (2016). [CrossRef] [Google Scholar]
  23. S. Rao, Mechanical vibration, 5th ed. Reading, Massachussetts: Addison Wesley, 257 – 374 (2011). [Google Scholar]
  24. Federal Transit Administration, Transit Noise and Vibration Impact Assessment, (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.