Issue |
MATEC Web of Conferences
Volume 20, 2015
AVE2014 - 4ième Colloque Analyse Vibratoire Expérimentale / Experimental Vibration Analysis
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 9 | |
Section | Numerical/Experimental combined approach | |
DOI | https://doi.org/10.1051/matecconf/20152002001 | |
Published online | 27 January 2015 |
Numerical and experimental assessment of railway-induced ground vibrations generated by IC/IR trains in Brussels
University of Mons, Department of Theoretical Mechanics, Dynamics and Vibrations, 31 Boulevard Dolez, 7000 Mons, Belgium
a e-mail: georges.kouroussis@umons.ac.be
b e-mail: olivier.verlinden@umons.ac.be
Nowadays, the rising demand for new railway networks in Brussels is associated to discomfort and disturbance felt by the neighbourhood. This problem is a major concern of inhabitant surrounding rail infrastructure and causes part of the delay in the Brussels RER network construction. The present paper focuses on the vibratory nuisances generated by domestic trains in Brussels region. A compound experimental/numerical analysis is presented, based on recent investigations on line L161 between Brussels and Luxembourg. A specific site was chosen due to the presence of a singular rail surface defect which induces large ground vibrations when trains pass over. The effect of this defect is examined by means of free field ground vibrations measured during the passing of an AM96 unit, and completed by numerical results obtained from a numerical model. For this assessment, a fully 3D numerical prediction model is built, based on a two-step approach which combines multibody analysis of the vehicle and finite element analysis of the track and surrounding ground. Calculated high ground vibrations stem from singular rail surface defects. The prediction model is validated first and then used to quantify the gain brought by fixing of rail surfaces, with a reduction of local defects.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.