Open Access
Issue
MATEC Web Conf.
Volume 152, 2018
9th Eureca 2017 International Engineering Research Conference
Article Number 01005
Number of page(s) 26
Section Chemical Engineering
DOI https://doi.org/10.1051/matecconf/201815201005
Published online 26 February 2018
  1. O. E. Ikwuagwu, I. C. Ononogbu, and O. U. Njoku, “Production of biodiesel using rubber seed oil,” vol. 12, pp. 57–62, 2000. [Google Scholar]
  2. S. Rooj, G. C. Basak, P. K. Maji, and A. K. Bhowmick, “New Route for Devulcanization of Natural Rubber and the Properties of Devulcanized Rubber,” J. Polym. Environ., vol. 19, no. 2, pp. 382–390, 2011. [CrossRef] [Google Scholar]
  3. P. J. H. van Beukering and M. A. Janssen, “Trade and recycling of used tyres in Western and Eastern Europe,” Resour. Conserv. Recycl., vol. 33, no. 4, pp. 235–265, 2001. [CrossRef] [Google Scholar]
  4. M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, “Progress in used tyres management in the European Union: A review,” Waste Manag., vol. 32, no. 10, pp. 1742–1751, 2012. [CrossRef] [PubMed] [Google Scholar]
  5. S. Ramarad, M. Khalid, C. T. Ratnam, A. L. Chuah, and W. Rashmi, “Waste tire rubber in polymer blends: A review on the evolution, properties and future,” Prog. Mater. Sci., vol. 72, pp. 100–140, 2015. [CrossRef] [Google Scholar]
  6. A. Joseph, B. George, M. K N, and R. Alex, “The Current Status of Sulphur Vulcanization and Devulcanization Chemistry,” Rubber Sci., vol. 29, no. 1, pp. 62–100, 2016. [Google Scholar]
  7. K. Bredberg, B. Erik Andersson, E. Landfors, and O. Holst, “Microbial detoxification of waste rubber material by wood-rotting fungi,” Bioresour. Technol., vol. 83, no. 3, pp. 221–224, 2002. [CrossRef] [Google Scholar]
  8. a. Zanchet, L. N. Carli, M. Giovanela, J. S. Crespo, C. H. Scuracchio, and R. C. R. Nunes, “Characterization of Microwave-Devulcanized Composites of Ground SBR Scraps,” J. Elastomers Plast., vol. 41, no. 6, pp. 497–507, 2009. [CrossRef] [Google Scholar]
  9. X. Zhang, C. Lu, and M. Liang, “Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber,” J. Polym. Res., vol. 16, no. 4, pp. 411–419, 2009. [CrossRef] [Google Scholar]
  10. H. Wang et al., “Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells,” Optoelectron. Adv. Mater. Rapid Commun., vol. 4, no. 8, pp. 1166–1169, 2010. [Google Scholar]
  11. V. V. Rajan, W. K. Dierkes, R. Joseph, and J. W. M. Noordermeer, “Science and technology of rubber reclamation with special attention to NR-based waste latex products,” Prog. Polym. Sci., vol. 31, no. 9, pp. 811–834, 2006. [CrossRef] [Google Scholar]
  12. V. A. Online, “Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries,” no. 3, pp. 20054–20063, 2013. [Google Scholar]
  13. G. Garcia, S. Aparicio, R. Ullah, and M. Atilhan, “Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications,” Energy & Fuels, vol. 29, pp. 2616–2644, 2015. [Google Scholar]
  14. Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: syntheses, properties and applications,” Chem. Soc. Rev., vol. 41, no. 21, p. 7108, 2012. [CrossRef] [PubMed] [Google Scholar]
  15. S. Seghar et al., “Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid,” Express Polym. Lett., vol. 9, no. 12, pp. 1076–1086, 2015. [CrossRef] [Google Scholar]
  16. C. Acids, C. Florindo, and A. M. Fernandes, “Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride,” ACS Sustainable Chemistry Engineering, vol. 2, pp. 2416-2425, 2014. [CrossRef] [Google Scholar]
  17. A. I. Isayev, S. P. Yushanov, S.-H Kim, and V. Y. Levin, “Ultrasonic Devulcanization of Waste Rubbers: Experimentation and modeling,” Rheol Acta, vol. 35, no. 6, pp. 616–630, 1996. [CrossRef] [Google Scholar]
  18. S. Seghar, N. A. Hocine, V. Mittal, S. Azem, B. Schmaltz, and N. Poirot, “Devulcanization of styrene butadiene rubber by microwave energy : Effect of the presence of ionic liquid,” vol. 9, no. 12, pp. 1076–1086, 2015. [Google Scholar]
  19. R. U. N. D. Anwendungen, “Devulcanization of Whole Passenger Car Tire Material,” pp. 20–25, 2013. [Google Scholar]
  20. P. S. Garcia, F. D. B. De Sousa, J. A. De Lima, S. A. Cruz, and C. H. Scuracchio, “Devulcanization of ground tire rubber : Physical and chemical changes after different microwave exposure times,” vol. 9, no. 11, pp. 1015–1026, 2015 [Google Scholar]
  21. F. Endres, D. McFariane and A. Abbot, Electrodeposition from Ionic Liquid, Germany: Wiley-VCH, 2008. [CrossRef] [Google Scholar]
  22. K. Shahbaz, F. S. Mjalli, M. A. Hashim, and I. M. AlNashef, "Prediction of deep eutectic solvents densities at different temperatures," Thermochimica Acta, vol. 515, pp. 67-72, 2011. [CrossRef] [Google Scholar]
  23. K. Aoudia, S. Azem, N. A. Hocine, M. Gratton, V. Pettarin, and S. Seghar, “Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin,” Waste Manag., vol. 60, pp. 471–481, 2017. [Google Scholar]
  24. A. I. Isayev and B. Sujan, “Nonisothermal vulcanization of devulcanized GRT with reversion type behavior,” J. Elastomers Plast., vol. 38, no. 4, pp. 291–318, 2006. [CrossRef] [Google Scholar]
  25. E. T. Thostenson and T.-W Chou, “Microwave processing: fundamentals and applications,” Compos. Part A Appl. Sci. Manuf., vol. 30, no. 9, pp. 1055–1071, 1999. [Google Scholar]
  26. C. Guo, L. Zhou, and J. Lv, “Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites,” Polym. Polym. Compos., vol. 21, no. 7, pp. 449–456, 2013. [Google Scholar]
  27. L. Landini, S. G. de Araújo, A. B. Lugão, and H. Wiebeck, “Preliminary analysis to BIIR recovery using the microwave process,” Eur. Polym. J., vol. 43, no. 6, pp. 2725–2731, 2007. [CrossRef] [Google Scholar]
  28. V.YU.Levin, S.H.Kim, and A.I.Isayev, “Ultrasound Devulcanization of Sulfur Vulcanized SBR Crosslink Density and Molecular Mobility,” Rubber Chemistry and Technology, vol. 69, no. 1. pp. 104–114, 1996. [CrossRef] [Google Scholar]
  29. A.Pelofsky, “Rubber reclamation using ultrasonic energy,” US3725314 A, 1971. [Google Scholar]
  30. M. Okuda and Y. Hatano, “Devulcanization of cured rubber,” US5891926 A, 1998. [Google Scholar]
  31. N. Senapati and D. Mangaraj, “Ultrasonic vulcanization,” US4548771 A, 1984. [Google Scholar]
  32. G. Garcia, S. Aparicio, R. Ullah, and M. Atilhan, “Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications,” Energy & Fuels, vol. 29, pp. 2616–2644, 2015. [Google Scholar]
  33. A. R. Ferreira, M. G. Freire, J. C. Ribeiro, F. M. Lopes, J. G. Crespo, and J. A. P. Coutinho, “Ionic liquids for thiols desulfurization: Experimental liquid-liquid equilibrium and COSMO-RS description,” Fuel, vol. 128, pp. 314–329, 2014. [CrossRef] [Google Scholar]
  34. V. A. Online, “Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries,” no. 3, pp. 20054–20063, 2013. [Google Scholar]
  35. S. Seghar et al., “Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid,” Express Polym. Lett., vol. 9, no. 12, pp. 1076–1086, 2015. [CrossRef] [Google Scholar]
  36. Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: syntheses, properties and applications,” Chem. Soc. Rev., vol. 41, no. 21, p. 7108, 2012. [CrossRef] [PubMed] [Google Scholar]
  37. M. H. Chakrabarti et al., “Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries,” Renew. Sustain. Energy Rev., vol. 30, pp. 254–270, 2014. [CrossRef] [Google Scholar]
  38. L. Bahadori, M. H. Chakrabarti, F. S. Mjalli, I. M. Alnashef, N. S. A. Manan, and M. A. Hashim, “Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems,” Electrochim. Acta, vol. 113, pp. 205–211, 2013. [CrossRef] [Google Scholar]
  39. R. Saputra, “Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy,” Taylor’s University Lakeside Campus, 2016. [Google Scholar]
  40. S. Ghose and A. I. Isayev, “Recycling of unfilled polyurethane rubber using high-power ultrasound,” J. Appl. Polym. Sci., vol. 88, no. 4, pp. 980–989, 2003. [CrossRef] [Google Scholar]
  41. T. Liang, “Continuous Devulcanization of Ground Tire Rubber of Different Particle Sizes Using an Ultrasonic Twin-Screw Extruder,” 2013. [Google Scholar]
  42. S. Ramarad, C. T. Ratnam, M. Khalid, A. L. Chuah, and S. Hanson, “Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation,” Radiat. Phys. Chem., vol. 130, pp. 362–370, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.