Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 03043
Number of page(s) 7
Section Parallel Session II: Water System Technology
DOI https://doi.org/10.1051/matecconf/201824603043
Published online 07 December 2018
  1. Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2006: 2169–2176, New York City, NY [Google Scholar]
  2. Cao Y, Wang C G, Li Z W, et al. Spatial-bag-offeatures. In: Computer Vision and Pattern Recognition (CVPR), 2010: 3352-3359 [Google Scholar]
  3. Grauman K, Darrell T. Pyramid match kernels: Discriminative classification with sets of image features. In: IEEE International Conference on Computer Vision (ICCV), 2005, 2: 1458-1465 [Google Scholar]
  4. Wallraven C, Caputo B, Graf A. Recognition with local features: the kernel recipe. In: IEEE International Conference on Computer Vision (ICCV), 2003, 1: 257–264 [CrossRef] [Google Scholar]
  5. Willamowski J, Arregui D, Csurka G, et al. Categorizing nine visual classes using local appearance descriptors. In ICPR Workshop on Learning for Adaptable Visual Systems, 2004 [Google Scholar]
  6. Zhang J, Marszalek M, Lazebnik S, et al. Local features and kernels for classifcation of texture and object categories: An in-depth study. Technical Report RR-5737, INRIA Rhˆone-Alpes, 2005 [Google Scholar]
  7. Yang J C, Yu K, Gong Y H, et al. Linear spatial pyramid matching using sparse coding for image classification. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009: 1794-1801 [Google Scholar]
  8. Torresani L, Szummer M, Fitzgibbon A. Learning query-dependent prefilters for scalable image retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009: 2615-2622 [Google Scholar]
  9. Yuan J S, Wu Y, Yang M. Discovery of collocation patterns: from visual words to visual phrases. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007: 1-8 [Google Scholar]
  10. Zitnick C L, Sun J, Szeliski R, et al. Object instance recognition using triplets of feature symbols. Tech. Report, Microsoft Research, 2007 [Google Scholar]
  11. Wu Z, Ke Q F, Isard M, et al. Bundling features for large scale partial-duplicate web image search. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009: 25-32 [Google Scholar]
  12. Hou X D, Zhang L Q. Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007: 1-8 [Google Scholar]
  13. Alexe B, Deselaers T, Ferrari V. What is an object? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010: 73-80 [Google Scholar]
  14. Felzenszwalb P F, Huttenlocher D P. Efficient graphbased image segmentation. International Journal of Computer Vision (IJCV), 2004, 59 (2): 167-181 [CrossRef] [Google Scholar]
  15. Aharon M, Elad M, Bruckstein A. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54 (11): 4311-4322 [NASA ADS] [CrossRef] [Google Scholar]
  16. Kolda T G. Bader B W. Tensor Decompositions and Applications. Siam Review, 2009, 51 (3): 455-500 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. Kim T K, Wong S F, Cipolla R. Tensor canonical correlation analysis for action classification. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007: 1-8 [Google Scholar]
  18. Kim T K, Cipolla R. Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2009, 31 (8): 1415-1428 [CrossRef] [Google Scholar]
  19. Everingham M, Gool L, Williams C, et al. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.