Open Access
Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 5 | |
Section | Parallel Session II: Water System Technology | |
DOI | https://doi.org/10.1051/matecconf/201824603032 | |
Published online | 07 December 2018 |
- W. C. Headley, J. D. Reed and C. R. C. Silva, “Distributed cyclic spectrum feature-based modulation classification”, 2008 IEEE Wireless Communicaitions and Networking Conference, Las Vegas, USA, March 2008, pp. 1200-1204. [Google Scholar]
- R. Ali, K. Ii-Min, K. Dong, C. Francois and I. Robert, “Likelihood-based modulation classification for multiple-antenna receiver”, IEEE Transactions on Communications, vol. 61, no. 9, pp. 3816-3829, 2013. [CrossRef] [Google Scholar]
- N. Jean, M. Burke, M. Xie, W. M. Davis, B. Lobell, and S. Ermon, “Recent trends in deep learning based natural language processing”, IEEE Computational Intelligence Magezine, vol. 13, no. 3, pp. 55-75, 2018. [CrossRef] [Google Scholar]
- A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis. “Deep learning for computer vision: a brief review”, Computational Intelligence and Neuroscience, pp. 1-13, 2018. [Google Scholar]
- K. Lan, D, Wang, S. Fong, L. Liu, K. Wong and N. Dey, “A survey of data mining and deep learning in bioinformatics”, Journal of Medical Systems, vol. 42, no. 8, pp. 1-20, 2018. [CrossRef] [Google Scholar]
- N. Jean, M. Burke, M. Xie, W. M. Davis, B. Lobell, and S. Ermon, “Combing satellite imagery and machine learning to predict poverty”, Science, vol. 353, no. 6301, pp. 790-794, 2016. [CrossRef] [Google Scholar]
- Z. Zheng, T. Huang, H. Zhang, S. Sun, J. Wen, and P. Wang, “Towards a resource migration method in cloud computing based on node failure rule”, Journal of Intelligence and Fuzzy Systems, vol. 31, no. 5, pp. 2611-2618, 2016. [CrossRef] [Google Scholar]
- T. J. OShea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recognition networks”, 2016 International Conference on Engineering Application of Neural Networks, Springer International Publishing, pp. 213-226, 2016. [Google Scholar]
- M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications”, IEEE Access, vol. 6, pp. 18484–18501, 2018. [CrossRef] [Google Scholar]
- T. J. OShea, T. Roy, and T. C. Clancy, “Over the air deep learning based radio signal classification”, IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, 2018. [CrossRef] [Google Scholar]
- R. Li, L. Li, S. Yang and S. Li, “Robust automated VHF modulation recognition based on deep convolutional neural networks”, IEEE Communications Letters, vol. 22, no. 5, pp. 946-949, 2018. [CrossRef] [Google Scholar]
- S. Ahmed, P. Francisco, A. Jerome, Z. Yi and D. Linda, “Spectrum monitoring for radar bands using deep convolutional neural networks”, 2017 IEEE Global Communications conference, Singapore, Dec. 2017, pp. 1-6. [Google Scholar]
- S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani and Y. D. Yao, “Modulation classification based on signal constellation diagrams and deep learning”, IEEE Transactions on Neural Networks and Learning Systems, pp. 1-10, 2018, doi: 10.1109/tnnls.2018.2850703. [CrossRef] [Google Scholar]
- J. Bergstra, F. Bastien, O. Breuleux and P. Lamblin, “Theano: deep learning on GPUs with python”, Journal of Machine Learning Research 1, pp. 1-4, 2011. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.