Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 5 | |
Section | Parallel Session II: Water System Technology | |
DOI | https://doi.org/10.1051/matecconf/201824603032 | |
Published online | 07 December 2018 |
VHF radio signal modulation classification based on convolution neural networks
National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan, Hubei, 430033, China
a Corresponding author: wowhow@163.com
Deep learning architecture has been attracting increasing attention due to the successful applications in various fields. However, its application in radio system has not been well explored. In this paper, we consider the very high frequency (VHF) radio signal modulation classification based on convolution neural networks (CNN). The main principle of CNN is analysed and a five-layer CNN model is built. The proposed CNN-based modulation classification method is proved useful for simulated radio signals generated by MATLAB, that the overall classification accuracy is high even in low SNR. In addition, the proposed CNN-based method is used for real VHF radio signals, and the key factors effecting the classification accuracy are analysed.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.