Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01114
Number of page(s) 10
Section Main Session: Water System Operations
Published online 07 December 2018
  1. Deng Q J, Wu F C, Xie F. Effect of industrial pollution on concentration of heavy metals in farmland soils[J]. Guizhou Agricultural Sciences, 2009, 37(9):240–244. [Google Scholar]
  2. Yu-Shuang L I. Advances in Soil Remediation Technologies of Urban Industrial Contaminated Sites[J]. Journal of Anhui Agricultural Sciences, 2012, 40(10):6119–6122. [Google Scholar]
  3. Xu Y N, Zhang J H, Ke H L, et al. Human health risk under the condition of farmland soil heavy metals pollution in a gold mining area[J]. Geological Bulletin of China, 2014, 33(8):1239–1252. [Google Scholar]
  4. Chu Y C, Xiao G E, Wei S Y, et al. Growth and Heavy Metal Accumulation of Brassica chinensis Applied with Sewage Sludge Compost[J]. Journal of Agro-Environment Science, 2013, 32(10):1965–1970. [Google Scholar]
  5. LIU Chun-yang, ZHANG Yu-feng, TENG Jie. Advances on Pollution Soils by Heavy Metals[J]. Pollution Control Technology, 2006. [Google Scholar]
  6. Xu H B, Sun T, Jiang X J. Simultaneous determination of zinc, chromium, lead, cadmium, copper and arsenic in waste water by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2008, 28(11):43–45. [Google Scholar]
  7. Xiao-Yan X U, Sun Y M, Wen-Zhuo S U, et al. Continuous Determination of Lead, Chromium and Cadmium in Fruit and Vegetable by Microwave Digestion-Graphite Furnace Atomic Absorption Spectrometry[J]. Food Science, 2009, 30(10):206–208. [Google Scholar]
  8. Xi-Ming M O, Peng Z Y, Shu-Nuan X U, et al. Determination of Cr( Ⅵ ) in drinking water by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2009. [Google Scholar]
  9. Dell’Aglio M, Gaudiuso R, Senesi G S, et al. Monitoring of Cr, Cu, Pb, V and Zn in Polluted Soils by Laser Induced Breakdown Spectroscopy (LIBS)[J]. Journal of Environmental Monitoring, 2011, 13(5):1422–1426. [CrossRef] [Google Scholar]
  10. Capitelli F, Colao F, Provenzano M R, et al. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy[J]. Geofisica Internacional, 2002, 106(1):45–62. [Google Scholar]
  11. FengnaXue. Spatial distribution characteristics of phosphorus and potassium in grassland small watershed based on LIBS technology [D]. Inner Mongolia Normal University, 2017. [Google Scholar]
  12. Qing Wang, Juan Tan, Jian Wu, et al. Application Progress of Laser Induced Breakdown Spectroscopy in the Field of Environment [J]. Environmental Monitoring in China, 2015, 31(3). [Google Scholar]
  13. Arca G, Ciucci A, Palleschi V, et al. Trace Element Analysis in Water by the Laser-Induced Breakdown Spectroscopy Technique[J]. Applied Spectroscopy, 1997, 51(8):1102–1105. [Google Scholar]
  14. HarmonRussell S., Lucia Frank C. De, Munson Chase A., et al. Laser-induced breakdown spectroscopy (LIBS): an emerging field-portable sensor technology for real-time chemical analysis for military, security and environmental applications[J]. Proc Spie, 2005, 5(1):59940K-59940K-7. [Google Scholar]
  15. Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12):335–366. [CrossRef] [Google Scholar]
  16. Lu Y, Wu J L, Li Y, et al. [Experimental investigation of Pb in soil slurries by laser induced breakdown spectroscopy]. [J]. Spectroscopy & Spectral Analysis, 2009, 29(11):3121–3125. [Google Scholar]
  17. Tianbing, Huang L, Yao M, et al. Quantitative Analysis of Pb in Soil Using LIBS and Internal Standard MethodChen[J]. Applied Laser, 2013, 33(6):623–627. [CrossRef] [Google Scholar]
  18. JinningBai. Study of Laser-Induced Breakdown Spectroscopy used for soil environmental quality monitoring [D]. Hebei University, 2013. [Google Scholar]
  19. Sirven J B, Bousquet B, Canioni L, et al. Laser-induced breakdown spectroscopy of composite samples : comparison of advanced chemometrics methods.[J]. Analytical Chemistry, 2006, 78(5):1462–1469. [CrossRef] [Google Scholar]
  20. Haddad J E, Villot-Kadri M, Ismaël A, et al. Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2013, s79–80(3):51–57. [CrossRef] [Google Scholar]
  21. Zou X H, Hao Z Q, Rong-Xing Y I, et al. Quantitative Analysis of Soil by Laser-induced Breakdown Spectroscopy Using Genetic Algorithm-Partial Least Squares[J]. Chinese Journal of Analytical Chemistry, 2015, 43(2):181–186. [Google Scholar]
  22. Chen T B, Yao M Y, Zhou H M, et al. Determination of Pb concentration in soil sample by laser-induced breakdown spectroscopy with PLS[J]. Laser & Infrared, 2014. [Google Scholar]
  23. Ferreira E C, Milori D M B P, Ferreira E J, et al. Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2008, 63(10):1216–1220. [CrossRef] [Google Scholar]
  24. Meng D S, Zhao N J, Ming-Jun M A, et al. Quantitative detection of Cu in different types of soils using laser induced breakdown spectroscopy combined with artificial neural network[J]. Journal of Optoelectronics·laser, 2015. [Google Scholar]
  25. Du Q C, Zhang Z Z, Ju Y. Research advances of the application of laser-induced breakdown spectroscopy on metal element detection [J]. Shandong Science, 2018, 31(2):55–63. [Google Scholar]
  26. Yan-Hong G U, Zhao N J, Ming-Jun M A, et al. Quantitative analysis of Cr in soils using LIBS with principal components regression[J]. Journal of Optoelectronics·laser, 2016, 27(7):748–753. [Google Scholar]
  27. Xiang L R, Ma Z H, Zhao X Y, et al. Comparative Analysis of Chemometrics Method on Heavy Metal Detection in Soil with Laser-Induced Breakdown Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(12):3871–3876. [Google Scholar]
  28. Huang J S. Determination of Some Heavy Metals in Soil by Laser Induced Breakdown Spectroscopy[D]. Zhejiang Normal University, 2009. [Google Scholar]
  29. Viskup R, Praher B, Linsmeyer T, et al. Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2010, 65(11):935–942. [CrossRef] [Google Scholar]
  30. Wang Y E. [Influence of delay time on laser-induced breakdown spectroscopy of limestone][J]. Guang pu xue yu guang pu fen xi = Guang pu, 2013, 33(5):1180. [Google Scholar]
  31. WenbingLi, Jiangxi Agricultural University. Parameter Optimization of LIBS in Detecting Chromium in Smelter Soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013. [Google Scholar]
  32. Zhou W, Liu Y, Huang J. Effects of Parameters on Spectrum Characteristics of Laser Induced Soil Plasma[J]. Journal of Atmospheric & Environmental Optics, 2016. [Google Scholar]
  33. Zhao N, Yanhong G U, Meng D, et al. Technique Progress and Development Trend of Laser-Induced Breakdown Spectroscopy[J]. Journal of Atmospheric & Environmental Optics, 2016. [Google Scholar]
  34. Gottfried J L. Multivariate Analysis of LIBS Spectra for Geomaterial Identification, Discrimination, and Classification[J]. 2008. [Google Scholar]
  35. GNicolodelli, Senesi G S, Romano R A, Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils ☆[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 111: 23–29. [CrossRef] [Google Scholar]
  36. Guo R, Song H. Analysis of Heavy Metals Chromium in Soil Using Double Pulse Laser-Induced Breakdown Spectroscopy[J]. Journal of Taiyuan University of Technology, 2014. [Google Scholar]
  37. Li K X, Zhou W D, Shen Q M, et al. Laser ablation assisted spark induced breakdown spectroscopy on soil samples[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(9):1475–1481. [CrossRef] [Google Scholar]
  38. Du C. Analyses of heavy metals by soil using dual-pulsed laser induced breakdown spectroscopy[J]. Acta Physica Sinica, 2013, 62(4):221–229. [Google Scholar]
  39. Meng D S, Zhao N J, Ma M J, et al. Heavy Metal Detection in Soils by Laser Induced Breakdown Spectroscopy Using Hemispherical Spatial Confinement[J]. Plasma Science and Technology, 2015, 17(8): 632–637. [CrossRef] [Google Scholar]
  40. CHEN Jin-zhong, Rui-lingMA, CHEN Zhen-yu, et al. Enhancement effect of carbon chamber confinement on laser plasma radiation[J]. Optics & Precision Engineering, 2013, 21(8):1942–1948. [CrossRef] [Google Scholar]
  41. Popov A M, Colao F, Fantoni R. Enhancement of LIBS signal by spatially confining the laser-induced plasma[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(5):602–604. [CrossRef] [Google Scholar]
  42. Liu Y, Bousquet B, Baudelet M, et al. Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2012, 73(73):89–92. [CrossRef] [Google Scholar]
  43. Koskelo A C, Eppler A S, Cremers D A, et al. Matrix Effects in the Detection of Pb and Ba in Soils Using Laser-Induced Breakdown Spectroscopy[J]. Applied Spectroscopy, 1996, 50(9):1175–1181(7). [CrossRef] [Google Scholar]
  44. Lanza N L, Ollila A M, Cousin A, et al. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data[J]. Icarus, 2015, 249: 62–73. [CrossRef] [Google Scholar]
  45. P Fichet, Tabarant M, Salle B, Comparisons between LIBS and ICP/OES[J]. Analytical & Bioanalytical Chemistry, 2006, 385(2):338–44. [CrossRef] [PubMed] [Google Scholar]
  46. Chan G C Y, Choi I, Mao X, et al. Isotopic determination of uranium in soil by laser induced breakdown spectroscopy[J] Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 122: 31–39. [CrossRef] [Google Scholar]
  47. Campbell K R, Wozniak N R, Colgan J P, et al. Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2017, 134. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.