Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01109
Number of page(s) 6
Section Main Session: Water System Operations
Published online 07 December 2018
  1. ConleyDJ, Likens GE. Ecology. Controlling eutrophication: nitrogen and phosphorus[J]. Science. 2009, 323(5917):1014. [CrossRef] [Google Scholar]
  2. Jeppesen E, Søndergaard M, Jensen JP, Havens KE, Anneville O, Carvalho L, et al. Lake responses to reduced nutrient loading—an analysis of contemporary long‐term data from 35 case studies[J]. Freshwater Biology. 2010, 50(10):1747–71. [CrossRef] [Google Scholar]
  3. Søndergaard M, Jensen JP, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia. 2003, 506–509(1-3):135-45. [CrossRef] [Google Scholar]
  4. Ding S, Chen M, Fan X, Qin B, Xu H et al. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms[J]. Sci Total Environ. 2018: 872–84. [CrossRef] [Google Scholar]
  5. Carpenter SR. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(32):11039–40. [Google Scholar]
  6. Bowes MJ, Jarvie HP, Halliday SJ, Skeffington RA, Wade AJ, Loewenthal M, et al. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration–flow relationships[J]. Science of the Total Environment. 2015, 511: 608–20. [CrossRef] [Google Scholar]
  7. Johnes PJ. Uncertainties in annual riverine phosphorus load estimation: Impact of load estimation methodology, sampling frequency, baseflow index and catchment population density[J]. Journal of Hydrology. 2007, 332(1–2):241–58. [CrossRef] [Google Scholar]
  8. O’Brien KR, Weber TR, Leigh C, Burford MA. Sediment and nutrient budgets are inherently dynamic: evidence from a long-term study of two subtropical reservoirs[J]. Hydrology & Earth System Sciences. 2016, 20(12):4881–94. [CrossRef] [Google Scholar]
  9. Viviano G, Salerno F, Manfredi EC, Polesello S, Valsecchi S, Tartari G. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds[J]. Water Research. 2014, 64(7):265–77. [CrossRef] [Google Scholar]
  10. Feng Y, Zhen H, Liu C. Analysis of pollution characteristics of storm runoff in the upper reaches of Dahuofang Reservoir[J]. Environmental Protection and Circular Economy. 2011, 31(6):46–8. [Google Scholar]
  11. Zhou J, Zhang M, Li Z. Dams altered Yangtze River phosphorus and restoration countermeasures[J]. Journal of Lake Sciences 2018, 30(4). [Google Scholar]
  12. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts[J]. Global Biogeochemical Cycles. 2008, 22(4):37–42. [CrossRef] [Google Scholar]
  13. Du E, De Vries W, Han W, Liu X, Yan Z, Jiang Y. Imbalanced phosphorus and nitrogen deposition in China’s forests[J]. Atmospheric Chemistry & Physics. 2016, 16(13):8571–9. [CrossRef] [Google Scholar]
  14. Mao Z, Yang S, Wang L, Cheng D. Areview of phosphorus retention in river ecosystems[J]. Journal of Hydraulic Engineering 2015, 46(5):515–24. [Google Scholar]
  15. Wang X. Monitoring and analysis of water quality in and out of Dahuofang reservoir[J]. Heilongjiang Science and Technology of Water Conservancy. 2012, 40(3):59–60. [Google Scholar]
  16. Xu S. FORTRAN Common Algorithm Assembly: TSINGHUA UNIVERSITY PRESS; 1992. [Google Scholar]
  17. Zheng B, Qin Y, Zhang L, Ma Y, Zhao Y, Wen Q. Sixty-year sedimentary records of polymetallic contamination (Cu, Zn, Cd, Pb, As) in the Dahuofang Reservoir in Northeast China[J]. Environmental Earth Sciences. 2016, 75(6):486. [CrossRef] [Google Scholar]
  18. Wang L, Zhang L. Study on Ecolodical Changes of Hydrobilogy in Dahuofang Reservoir Liao Ning[J]. Hailongjiang Environmental Journal 2002, 26(4):119–22. [Google Scholar]
  19. Guo R, He X. Spatial variations and ecological risk assessment of heavy metals in surface sediments on the upper reaches of Hun River, Northeast China[J]. Environmental Earth Sciences. 2013, 70(3):1083–90. [CrossRef] [Google Scholar]
  20. Lin C, Wang Z, He M, Li Y, Liu R, Yang Z. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China[J]. Journal of Hazardous Materials. 2009, 170(1):278. [CrossRef] [Google Scholar]
  21. Zhang M, Xu Y, Shao M, Cai Q. Spatiotemporal distribution of total nitrogen and total phosphorus in sediments of XiangXiBay, Three Gorges Reservoir[J]. Chinese Journal of Applied Ecology. 2009, 20(11):2799–805. [Google Scholar]
  22. Gao Yn, Zhou D, Yu P, Liang G, Bai F, Fu J. Secondary flocculation ultrafiltration treatment for Dahuofang reservoir high turbidity pollution [J]. Technology of Water Treatment. 2014(10):116–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.