Open Access
Issue
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01108
Number of page(s) 8
Section Main Session: Water System Operations
DOI https://doi.org/10.1051/matecconf/201824601108
Published online 07 December 2018
  1. Band, L. E. “Topographic partition of catchments with digital elevation models.” Water Resour. Res., 22(1), 15–24.1986. [CrossRef] [Google Scholar]
  2. Bao, H. J. Coupling EPS-Hydrologic-Hydraulic Model for Flood Forecasting. Ph. D. Dissertation. Nanjing: Hohai University. (In Chinese), 2009. [Google Scholar]
  3. Bao, H. J. Research on the Application of Flood Forecasting and Scheduling Model in the Catchment of Yishusi. M. E. Dissertation. Nanjing: Hohai University. (In Chinese), 2006. [Google Scholar]
  4. Bao H. J. and Zhao L. N.. Application of a developed atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts. Acta Meteor. Sinica, 2012, 26(1):93–102. [CrossRef] [Google Scholar]
  5. Bao H. J., Li Z. J., Wang L. L., et al. Flash flood forecasting method based on distributed hydrological models in a small basin and its application, Torrential Rain and Disasters. 2017, 36(2):156–163. [Google Scholar]
  6. Bao H. J., Wang L. L., Zhang K, Li Z. J.. Application of a developed distributed hydrological model based on the mixed runoff generation model and 2-D kinematic wave flow routing model for better flood forecasting, Atmospheric Science Letters, 2017, 18(7):284–293. [CrossRef] [Google Scholar]
  7. Buizza R. The value of probabilistic prediction. Atmospheric Science Letters Special Issue:HEPEX Workshop:Stresa, Italy, June 2008, 9: 36–42 [Google Scholar]
  8. Cloke H. L., Pappenberger F. Evaluating forecasts for extreme events for hydrological applications: an approach for screening unfamiliar performance measures. Meteorological Applications, 15(1): 181-197. 2008. [CrossRef] [Google Scholar]
  9. Cloke H. L., Pappenberger F. Ensemble flood forecasting: A review. Journal of hydrology, 375:613–626. 2009. [Google Scholar]
  10. Cunge, K. A. “On the subject of a flood propagation method (Muskingum Method).” J. Hydrau. Res., 7, 205–230.1969. [CrossRef] [Google Scholar]
  11. Demeritt, D. et al. Ensemble predictions and perceptions of risk, uncertainty, and error in flood forecasting. Environmental Hazards, 7(2): 115. 2007. [CrossRef] [Google Scholar]
  12. DKKV. Flood Risk Reduction in Germany. Lessons Learned from the 2002 Disaster in the Elbe Region. Summary of the Study. Deutsches Komitee fuer Katastrophen vorsorge (DKKV) (German Committee for Disaster Reduction). Publication 29e. Bonn, 2004. [Google Scholar]
  13. Fairfield, J., and Leymarie, P. “Drainage networks from grid digital elevation models.” Water Resour. Res., 27(5): 709-717. 1991. [CrossRef] [Google Scholar]
  14. Goswami M, OConnor K, Bhattarai K. Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment. Journal of Hydrology 333 (2-4): 517–531. 2007. [CrossRef] [Google Scholar]
  15. He Y, WetterhallF, ClokeH. L., et al. Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions, Meteorological Applications, Special Issue: Flood Forecasting and Warning, 16(1): 91–101. 2009. [Google Scholar]
  16. He Y, WetterhallF, JBao H., et al. Ensemble forecasting using TIGGE for the July-September 2008 floods in the Upper Huai catchment: a case study, Atmosphereric Science Letters. DOI:10.1002/asl.270. 2010. [Google Scholar]
  17. Li, Z. J., Cheng, Y., and Xu, P. Z. Application of GIS-based hydrological models in humid catchments. Water for Life: Surface and Ground Water Resources, Proceedings of the 15th APD-IAHR & ISMH, 685-690. Madras. 2006. [Google Scholar]
  18. Wang, L. L., Li, Z. J., and Bao, H. J. Application of hydrological models based on DEM in the Yihe catchment. Journal of Hydrologic Engineering, 37(S1), 417-422. (in Chinese). 2007. [Google Scholar]
  19. Penning-Rowsell, E., Tunstall, S., Tapsell, S. and Parker, D., The benefits of flood warnings: Real but elusive, and politically significant. J. the Chart. Inst. Water Environ. Manage., 14: 7–14. 2000. [CrossRef] [Google Scholar]
  20. Park YY, Buizza R, Leutbecher M. TIGGE: preliminary results on comparing and combining ensembles. ECMWF TM 548, European Centre for Medium-Range Weather Forecasts (ECWMF), Reading, UK. 2007. [Google Scholar]
  21. Parker, D. and Fordham, M., Evaluation of flood forecasting, warning and response systems in the European Union. Water Resour. Management, 10(279–302). 1996. [CrossRef] [Google Scholar]
  22. Pitt, M. Learning Lessons from the 2007 floods: An independent review by Sir Michael Pitt: interim report, London, UK., 2007. [Google Scholar]
  23. Roulin E. Skill and relative economic value of medium-range hydro-logical ensemble predictions. Hydrology and Earth System Sciences Discussions 3: 1369–1406. 2006. [CrossRef] [Google Scholar]
  24. The Ministry of Water Resources of the People’s Republic of China (MWR). “Standard for hydrological information and hydrological forecasting (SL 250–2000).” Hydraulic and Hydropower Publisher of China, Beijing, 18–21 (in Chinese). 2000. [Google Scholar]
  25. Van Berkom, F., van de Watering, C., de Gooijer, K. and Neher, A., Inventory of Flood Information Systems in Europe - a study of available systems in Western-, Central- and Eastern Europe, INTERREG IIIC Network Flood Awareness and Prevention Policy in Border Areas’ (FLAPP), the Netherlands. 2007. [Google Scholar]
  26. Yao, C., Li, Z. J., Bao, H. J., and Yu, Z. B. Application of a developed Grid-Xin’anjiang model to Chinese catchments for flood forecasting purpose. Journal of Hydrologic Engineering, 14(9), 923-934. [doi:10.1061/(ASCE)HE.1943-5584.0000067]. 2009. [CrossRef] [Google Scholar]
  27. Zhao L. N., Wu H., Tian F. Y,, et al. 2010: Assessment of Probabilistic Precipitaiton Forecasts for HUAIhe Catchment Using TIGGE Data, Meteor. Mon., 36(7):133–142 (in chinese) [Google Scholar]
  28. Zhao, R. J. The Xin’anjiang model applied in China. Journal of Hydrology, 135(1-4), 371-381. [doi: 10.1016/0022-1694(92)90096-E]. 1992. [CrossRef] [Google Scholar]
  29. Zhao R, Liu X. The Xinanjiang model. In Computer Models of Catchment Hydrology, Singh VP (eds). Water rsources Pubns. 1995. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.